Identity and Client Security for Remote Access
- Virtual Credential Container -

Yukio Tsuruoka

NTT Information Sharing Platform Laboratories
Contents

• About NTT...
• Background
• Outline
• Client security
• Use case: remote access
• Solution: proof-of-concept demonstration
• Related topics
• Summary
Nippon Telegraph and Telephone (NTT) Corporation

NTT is a holding company conducting planning and R&D of telecommunication services

Subsidiaries include:

• NTT East & NTT West - local operation in Japan
• NTT Communications - long distance and international telecommunication, IP networks, and ICT solutions
• NTT Data - system integration and network service
• NTT DoCoMo - mobile network operator

Reference: www.ntt.co.jp/about_e/corporatedata.html

www.ntt.co.jp/index_e.html (TSE:9432, NYSE: NTT)
NTT’s services

• FTTH (provided by NTT East and NTT West)
 – 6 million subscribers, 177% growth rate
 – NGN commercial service has started
 – Planned: 20 million NGN subscribers by 2010

• Mobile network services (by NTT DoCoMo)
 – 53 million subscribers, 80% are 3G users
 – 7.2Mbps HSDPA access service has started
NTT’s activities regarding identity management

- **NTT Communications**
 - Provides Single Sign-On (SSO) service to ISP (OCN) users
 - Users can access both OCN (7.7 million IDs) and “goo” sites (8 million IDs) using SSO via SAML 2.0

- **NTT Data**
 - SSO achieved by ID Federation of intranet (20,000 IDs, 200 systems) and group company network (32,000 IDs, 20 systems)

- **NTT Software**
 - Identity federation module supports SAML 2.0:
 - TrustBind/Federation Manager
Background

• Enterprise concerns: risk of information leakage and legal compliance
• To increase manageability, enterprises tend to aggregate business information at one point
• Information is accessed from various locations (branch offices or outside the office) through a broadband access network
• Secure remote access is the key element to protecting corporate assets
Security of Remote Access

• Requirement: maintain secrecy of credentials

• Software-based credential container
 – Example: Windows certificate store
 – Credentials must be protected from malware

• Hardware-based credential container
 (cryptographic token)
 – Example: USB cryptographic key
 – High security, but requires additional hardware cost and may be lost
Outline

• Problem
 – Protect credentials from malware in Windows
 – Minimize additional costs of protection

• Solution
 – Use virtualization for protection (Virtual Credential Container) and
 – Use standard protocols (Liberty Advanced Client) for provisioning of credentials

• Merit
 – Security of remote access strengthened with little additional cost (no external device needed)
Outline of solution – client configuration

NTT virtual credential container (VCC) stores credentials securely
Intel Identity capable platforms (ICP) provisions credentials based on Liberty
Advanced Client specifications

virtual machine (user domain)

application (browser, for example)

Windows

virtual machine (service domain)

NTT VCC

Intel ICP

service OS (Linux)

Provisioning server

Advanced Client protocol

Client security can be strengthened without (the need for) external devices

Apr 7, 2008
Copyright © 2008 Nippon Telegraph and Telephone Corporation All Rights Reserved.
Client security

Threats in user authentication

• Threat T1: malware attack
• Threat T2: laptop loss or theft
Countermeasures to malware (T1)

• Monitoring (Based on a black list)
 – Example: Virus scan by software

• Integrity check (based on a white list)
 – Check that the fundamental set of software is not forged.
 – Example: BIOS, OS, and drivers are checked.

• Minimizing the possible damage
 – Preventing key leakage even if application environment is infected by malware
 – Domain separation: split execution environments for critical operations (e.g., cryptographic operations) from that for applications
Domain separation by virtualization

Separate credential container from Windows environment
Malware can not access credential container

- virtual machine (user domain)
 - applications
 - user OS (Windows)
 - Driver*

- virtual machine (service domain)
 - virtual credential container (VCC)
 - ICP

Malware

*: supports Microsoft Crypto API and PKCS#11
Use case: remote access scenario

Remote access credentials are provisioned and stored securely to laptop located at office.

1. Authentication
2. Provision credentials
3. Store credentials

Office network

Employee portal

Advanced Client specification, provisioning service

Business trip

Hot spot

Broadband network (NGN, for example)

VPN-gateway

Credentials
Provisioning sequence based on Advanced Client specification

Employee portal (Advanced Client provisioning service)

Client

Browser + plug-in

Intel ICP (PMM)

Credential

NTT VCC (PM)

Credential

Liberty Advanced Client specification

Authentication

Handle

Handle

Credential

VPN gateway

PM: Provisioned Module
PMM: PM Manager
VCC: Virtual Credential Container
ICP: Identity Capable Platforms
Issues: Countermeasures against laptop theft (T2)

- A malicious user detaches hard disk and reads credentials ⇒ Do not store credentials as plaintext

- Software encryption
 Examples: Microsoft BitLocker, EFS

- Special Hardware
 Example: hard disk with full disk encryption

- Deposit credentials with a credential server, and download credentials on-demand
Deposit credentials with a credential server

Initial settings:
Deposit credential K1 with a credential server.

Download:
A user inputs PIN at the credential server, then credential K1 is sent to a credential container.
Security of virtualization

• We expect less vulnerability in VMM than that in OSs because the code is smaller
• Several threats related to virtualization have been reported
 – Example: virtual machine based rootkit, subsystem as spy problem
 – However, there are countermeasures
• From the technical point of view, there is no serious obstacle to the security of virtualization
Usage model of virtual credential container

Multi-device (ubiquitous) environment: a user wants to be able to use a service equally from various devices ⇒ requires relationship management among devices

Centralized model

There is a central authentication (key) device, which must be carried all the time

Distributed model

All devices have a key

- Centralized model:
 - Centralized authentication device
 - Carried all the time

- Distributed model:
 - All devices have a key
 - Federation among devices
Future works

• Explore more uses cases
 – SaaS (Software as a Service)
 – Fully converged Next Generation Networks

• Enhance manageability functions
 – Monitoring, updating, and deleting credentials (and programs that manage and use them)

• Adopt technologies to a wider variety of clients
 – Smart phones
 – Information appliances
 – Home gateways
Towards secure credential ecosystems

Service providers (SaaS, ASP...)
Benefits
• lower cost of and shorter time to deployment
• prevent illegal use

Network operators (BB, Wireless, VPN...)
Benefits
• efficient provisioning
• various network usage

Virtual Credential Container (VCC) technology with open identity standards

Enterprises
Benefits
• security
• lower cost
• convenience and confidence

Consumers

Device vendors (PC, Mobile, Software...)
Benefits
• advanced security
• increase customer loyalty

Contact us for more information: ufo-vt@lab.ntt.co.jp
Summary

The demo prototype consists of

• NTT Virtual Credential Container (VCC)
 – stores credentials securely for remote-access

• Intel Identity Capable Platforms (ICP)
 – provision credentials based on Liberty Advance Client specifications

• The solution will bring:
 – Significant cost reduction and greater client manageability to network operators, service providers, and enterprises
 – Convenience and confidence to users