Test Plan for Liberty Alliance SAML Test Event

Test Criteria

SAML 2.0

Version 3.1

Editor:

Kyle Meadors, Drummond Group Inc.

Abstract:

This document describes the test steps to achieve the Liberty Interoperable™ designation for various SAML 2.0 modes and profiles.

Filename:

Liberty_Interoperability_SAML_Test_Plan_v3.1.odt
Contents

Introduction .. 3
14 Overview of Test Plan... 3
Test Plan History.. 3
16 SAML Conformance Modes... 3
17 eGov Profile.. 4
18 POST Binding.. 4

Technical Requirements .. 5
19 Metadata.. 5
21 IdP Authentication... 5
22 Trivial Processing... 5
23 Authentication Contexts... 5
24 Name Identifier Formats.. 6
25 XML Signatures.. 6
26 XML Encryption... 7
27 Attribute Profiles... 7
28 Consensus Items... 7

Test Cases ... 9
Test Cases Associated with Conformance Modes.. 9
32 General Test Case Requirements.. 10
33 Test Case A – Redirect Binding... 10
34 Test Case B – SOAP Binding... 13
35 Test Case C – POST Binding... 16
36 Test Case D – Extended SAML Modes... 19
37 Test Case E – IDP Introduction... 22
38 Test Case F – Single Session Logout.. 23
39 Test Case G – Unsolicited <Response>... 25
40 Test Case H – Affiliations.. 26
41 Test Case I – Multiple SP Logout... 28
42 Test Case J – Force Authentication and Passive Authentication.. 30
43 Test Case K – ECP.. 32
44 Test Case L – SAML Authentication Authority.. 33
45 Test Case M – SAML Attribute Authority.. 35
46 Test Case N – SAML Authorization Decision Authority.. 37
47 Test Case O – SAML URI Binding.. 39
48 Test Case P – Error Testing... 40
49 Test Case Q – eGov Profile... 42

References.. 46
Introduction

Overview of Test Plan

This document is the Liberty SAML 2.0 Test Criteria Test Plan, which contains the scope of the technical requirements for Liberty certification of SAML 2.0. This document is intended to be publicly viewable through the Liberty Alliance website as well as prospective test participants.

The contents of this document include the test cases for Liberty SAML 2.0 certification as well as additional technical information relevant to testing. The test cases include different test steps, which as a whole cover the requirements of the SAML profiles [SAMLProf] and SAML conformance modes [SAMLConf].

Another document, Liberty SAML 2.0 Process Test Plan, contains the detailed testing process and test administration requirements for the SAML 2.0 certification test. The Liberty SAML 2.0 Process Test Plan is available only to registered test participants. While the Process Test Plan is used in completing a certification event, it is not needed to understand the technical expectation for completing SAML 2.0 certification.

Test Plan History

This test plan replaces SAML 2.0 Interoperability Testing Procedure (vs. 3.0) test plan [SAMLTP30]. The changes to this version are modifications to Test Case E and Q and new additions of Test Cases I and J. Also, consensus items reached from the last interoperability test event have been included here.

• SAML 2.0 Interoperability Testing Procedure, vs. 3.0.J (11/20/2007)
• SAML 2.0 Interoperability Testing Procedure, vs. 2.0 (07/07/2006)
• SAML 2.0 Interoperability Testing Procedure, vs. 1.0 (2005)

SAML Conformance Modes

This test plan document contains test cases that cover the nine operational conformance modes of SAML 2.0 and the specific features that are required or optional for each mode. The details of each mode are provided in [SAMLConf], and the conformance modes a listed here:

• IdP – Identity Provider
• IdP Lite – Identity Provider Lite
• SP – Service Provider
• SP Lite – Service Provider Lite
• ECP – Enhanced Client/Proxy
• IdP Extended – Identify Provider Extended
• SP Extended – Service Provider Extended
• SAML Attribute Authority
• SAML Authorization Decision Authority
• SAML Authentication Authority

• SAML Requester

Each conformance mode requires different test cases, but some test cases cover multiple conformance modes. The required test cases for each conformance mode are noted in the Test Case section of this document.

Certification in conformance modes IdP Extended and SP Extended can only be given if a participant has met the certification requirements of one of the standard SP or IdP modes.

Because significant features in some of these modes are Optional the Liberty Interoperability Testing Program has created an additional designation “SP Complete” to recognize and differentiate implementations that demonstrate interoperability of all optional features for the SP conformance mode.

eGov Profile

The eGov Profile test case is an optional test case. It follows the SAML 2.0 requirements for the General Service Administration (GSA) of the US Government. The technical requirements for this test case come from the GSA SAML Profile in [GSAInterface], [GSAAdoptSchm] and [GSATechAppr]. These documents should be consulted for further explanation of the eGov requirements.

POST Binding

Although the POST binding is not included in the SAML SCR, it is permitted with the SAML specification and has some user deployment. POST Binding is an optional Liberty designation conformance mode. It involves use of POST binding for AuthnRequest, Name ID Management and SLO. Certification in the POST Binding mode is done through successfully completing this test case.
Technical Requirements

Metadata

There are no normative requirements in [SAMLConf] regarding the content or processing of metadata as described in [SAMLMeta]. However, for purposes of this certification event, implementations are required to:

- Furnish correct metadata, and
- Process metadata furnished by other testing partners

While metadata is not specified for SAML Attribute Requesters, interoperability with SAML Authorities is very difficult without it, and for this certification event it is required that SAML Attribute Requesters provide metadata as described in the draft metadata extension specification [SAMLMetaExt]. It is not necessary or meaningful for an ECP to produce or consume metadata.

IdP Authentication

SAML does not normatively specify any requirements for user authentication at IdP for Web SSO. In fact, user authentication is explicitly described as “out of scope” [SAMLProf]. However, for purposes of interoperability testing, it is required that IdP implementations offer at least one of these authentication methods:

1. HTTP Basic Auth.
2. HTTP Form Post
3. HTTP Get

Similarly, it is required that user agents, particularly ECP implementations, be able to authenticate using at least one of these methods.

Trivial Processing

Several features specified by SAML (e.g., IdP Proxy) can be implemented such that any request simply returns an error response. While this trivial behavior is, strictly speaking, in conformance with the specifications, it is not meaningful in the context of interoperability testing. Except where explicitly indicated (e.g., for certain Name Identifier formats) all testing steps will require non-trivial responses in order to be deemed successful.

Authentication Contexts

Some of the SAML Modes rely on a well-defined ordering of authentication contexts. The SAML specifications do not normatively specify an ordering [SAMLAuthnCxt] and leave the comparison decisions up to the implementation [SAMLCore]. However, for purposes of testing we will arbitrarily define an ordering of authentication contexts to be used in the tests. This arbitrary listing of authentication class URIs, in order of increasing strength, is:

1. any defined authentication context not listed below
2. urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession
4. `urn:oasis:names:tc:SAML:2.0:ac:classes:Password`

This ordering should be observed by all implementations testing SAML modes where authentication contexts must be compared. The overall concept of the testing of the Authentication Authority is to create several different assertions using different authentication contexts. Then these are queried using the query terms ("exact", "better", "maximum", "minimum") and a reference authentication context.

NOTE: Complete implementation of these authentication contexts is not required. These authentication context URIs should simply be asserted in requests and responses to demonstrate interoperability of authentication context processing rules.

Name Identifier Formats

The following Name Identifier Formats are defined by [SAMLCore]:

1. Unspecified
2. Email
3. X.509 Subject
4. Windows
5. Kerberos
6. Entity
7. Persistent
8. Transient

Every implementation is required to accept messages containing any of these formats, but [SAMLCore] only requires that the last two be processed.

XML Signatures

The [SAMLConf] does not specifically indicate where XML Signatures are required, but the underlying specifications in [SAMLProf] make signing required for certain profiles. Specifically, these are:

1. Web SSO: The assertion element(s) in the `<Response>` MUST be signed for the HTTP POST binding.
2. ECP Profile: The assertion element(s) in the `<Response>` issued by the IdP MUST be signed.
3. Single Logout: The `<LogoutRequest>` and `<LogoutResponse>` MUST be signed for the HTTP redirect binding.
4. Name Identifier Management: The `<ManageNameIDRequest>` and `<ManageNameIDResponse>` MUST be signed for the HTTP redirect binding.

SP and IdP implementations may indicate via metadata a desire for requests or responses to be signed for other bindings than those indicated above. However, such stipulations in metadata are not binding and adherence is not required.
XML Encryption

[SAMLConf] stipulates several different encryption algorithms and key transport mechanisms that MUST be implemented. However, these testing procedures do not require demonstration of support for all these combinations and instead rely on successful interoperability as a measure of conformance. Implementations should take care to ensure that elements to be encrypted include any XML namespace prefix declarations so that, when decrypted, the element will remain valid independent of context. One method for achieving this is described in [ExcXMLCan], but other approaches will work.

Note that while the `<ds:KeyInfo>` and `<xenc:EncryptedKey>` elements are not required in the SAML specifications or related schemas, these elements MUST be included in messages for interoperability testing. There is no normative mechanism for exchanging these keys out-of-band. The precise location of these elements in the message is underspecified; the most common practice among interoperable SAML implementations is that in each encrypted element there be one `<xenc:EncryptedKey>` element in parallel with the `<xenc:EncryptedData>`, and that this `<xenc:EncryptedKey>` be inferred as the relevant key information for decryption without relying on any references within the subelements. An erratum has been created to clarify this; see PE43 in [SAMLErrata]. For this certification event, this most common practice stated above SHOULD be done.

Finally, encryption coupled with deflation and URL encoding may create URLs that exceed the maximum length supported by some browsers. Consequently, encryption is contraindicated for the MNI HTTP-Redirect testing steps.

Attribute Profiles

[SAMLConf] makes no normative statements about which Attribute Profiles in [SAMLProf] are required to be supported by SAML Attribute Authority or a SAML Requestor. These are the profiles described in [SAMLProf] except for X.500/LDAP, which is described in [SAMLLDAP]:

1. Basic
2. X.500/LDAP
3. UUID
4. DCE PAC
5. XACML

Of these, this document only describes testing procedures for the Basic profile, and does not describe any testing procedures regarding the other profiles.

Consensus Items

Consensus Items contains standards/implementation issues the product test group reached consensus on in previous Liberty test events in order to achieve interoperability among those product test groups. In order to maintain interoperability with previously tested versions, the consensus items will be observed in this test event.

- DSAwithSHA1 signature algorithm not supported. Section 4.1 of [SAMLConf] states that the DSAwithSHA1 signature algorithm, while recommended, is not required by SAML 2.0. Participants are only to use digital certificates with the required RSAwithSHA1 signature algorithm.
• Ignore EncryptionMethod elements in metadata. There is some confusion of interpretation implementation of the EncryptionMethod metadata elements described in Section 2.4.1.1 of [SAMLMeta]. After confirming with OASIS SSTC, EncryptionMethod is to be ignored.

• Encryption with NameIDPolicy and ID Encryption. A question had arisen on interpreting NameIDPolicy from [SAMLCore] in lines 2136-2142. It was decided that if NameIDPolicy of AuthnRequest says ID is to be encrypted, it must be encrypted in the assertion and if NameIDPolicy of AuthnRequest does not state the ID is to be encrypted, the IDP MAY still encrypt the ID based on its policy, specifically its policy with the SP.

• SSL Server-side Authentication Only for SOAP connections. To insure all participants used the same security settings, it was agreed to only use SSL server-side authentication for SOAP connections and not to use SSL client-side authentication.
Test Cases

Overview of Test Case Description

Each test case is setup with the first part listing an overview of the test steps in the test case. The second part describes the details of the individual test steps to carry out the test case. The test step overview lists the sequence of test steps along with a general description of the message or action or configuration setting required. The test step details provide more information on the expected test steps.

Test Cases Associated with Conformance Modes

In order to achieve certification in one or more of the Liberty SAML Conformance Modes, the associated test cases must be completed with all test participants with aligning modes. For example, a product testing for an IdP conformance mode must complete Test Cases A, B, C, E, F, G, H and I against all products testing for a SP and SP Lite conformance mode. The specific pairing among participants will be given at the beginning of the certification event. A conformance mode may not require completion of all the test steps in the associated test cases. The individual test cases provide details of test steps that may or must be omitted depending on the conformance mode.

<table>
<thead>
<tr>
<th>Conformance Mode</th>
<th>Test Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdP</td>
<td>A, B, E, F, G, H, I, J, K, P</td>
</tr>
<tr>
<td>IdP Extended</td>
<td>D</td>
</tr>
<tr>
<td>IdP Lite</td>
<td>A, B, E, F, G, H, I, J, K</td>
</tr>
<tr>
<td>SP Extended</td>
<td>D</td>
</tr>
<tr>
<td>ECP</td>
<td>K</td>
</tr>
<tr>
<td>SAML Attribute Authority</td>
<td>M</td>
</tr>
<tr>
<td>SAML Authorization Decision Authority</td>
<td>N</td>
</tr>
<tr>
<td>SAML Authentication Authority</td>
<td>L</td>
</tr>
<tr>
<td>SAML Requester</td>
<td>O</td>
</tr>
</tbody>
</table>
General Test Case Requirements

For all test cases, the following requirements are to be followed unless a test case specifically states otherwise:

- SAML AuthnRequest MUST be signed.
- For POST bindings, the assertion MUST be signed.
- For POST bindings, the entire response message MAY be signed, but if signed, the receiving partner MUST validate the signature.
- Encryption of NameIDs and Assertions MUST be enabled.

Test Case A – Redirect Binding

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite
NOTE – IdP Lite and SP Lite actors are to ignore Name ID Management steps

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encryption Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO HTTP redirect / Persistent / Federate</td>
</tr>
<tr>
<td>3</td>
<td>MNI IdP-Initiated / HTTP redirect (signed)</td>
</tr>
<tr>
<td>4</td>
<td>SLO SP-Initiated / HTTP redirect (signed)</td>
</tr>
<tr>
<td>5</td>
<td>Web SSO HTTP redirect / Not Federated</td>
</tr>
</tbody>
</table>
| 6 | SLO IdP-initiated / HTTP redirect (signed)
 Destroy Federation and NameIds |
| 7 | Web SSO HTTP redirect / Federate |
| 8 | MNI SP-Initiated / HTTP redirect (signed) |
| 9 | SLO SP-Initiated / HTTP redirect (signed) |
| 10 | Web SSO HTTP redirect |
| 11 | SLO IdP-Initiated / HTTP redirect (signed) |
| 12 | Encryption Disabled |

Test Steps Details

1. User is logged into SP. IdP enables encryption of NameId and Assertion.
 IdP CONFIRM: IdP has enabled encryption for NameId and Assertion.

2. User/SP does Single Sign-On with Persistent Name Identifier and with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.
IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

3. IdP sends signed ManageNameIdRequest message to the SP using HTTP Redirect binding. SP returns signed ManageNameIdResponse message using HTTP Redirect binding. SP Lite and IdP Lite modes omit this step.

 SP CONFIRM: Receives signed ManageNameIdRequest on HTTP Redirect binding.
 IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.

4. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

5. User/SP does Single Sign-On with Federation already done where AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

6. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP returns a signed LogoutResponse message. IdP sends signed ManageNameIdRequest message with the Terminate element to the SP using HTTP Redirect binding. Federation for User is terminated. SP returns signed ManageNameIdResponse message using HTTP Redirect binding. User logs out of session.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.
 SP CONFIRM: Receives signed ManageNameIdRequest with Terminate flag on HTTP Redirect binding.
 SP CONFIRM: User federation is terminated.
 SP CONFIRM: User logs out of session.
 IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.
 IdP CONFIRM: User federation is terminated.
 IdP CONFIRM: User logs out of session.

7. User/SP does Single Sign-On with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.
8. SP sends signed ManageNameIdRequest message to the IdP using HTTP Redirect binding. IdP returns signed ManageNameIdResponse message using HTTP Redirect binding. SP Lite and IdP Lite modes omit this step.
 - **IdP CONFIRM:** Receives signed ManageNameIdRequest on HTTP Redirect binding.
 - **SP CONFIRM:** Receives signed ManageNameIdResponse on HTTP Redirect binding.

9. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.
 - **IdP CONFIRM:** Receives signed LogoutRequest on HTTP Redirect binding.
 - **SP CONFIRM:** Receives signed LogoutResponse on HTTP Redirect binding.

10. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP Redirect binding.
 - **IdP CONFIRM:** SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - **SP CONFIRM:** IdP returns signed SAML Response through HTTP POST binding.

11. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP returns a signed LogoutResponse message.
 - **SP CONFIRM:** Receives signed LogoutRequest on HTTP Redirect binding.
 - **IdP CONFIRM:** Receives signed LogoutResponse on HTTP Redirect binding.

12. IdP disables encryption of NameIDs and Assertions. Steps 2-11 are repeated.
 - **IdP CONFIRM:** IdP has disabled encryption for NameId and Assertion.
 - **IdP/SP CONFIRM:** Steps 2-11 are successfully executed.
Test Case B – SOAP Binding

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite

NOTE – IdP Lite and SP Lite actors are to ignore Name ID Management steps

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encrypted IDs and Assertions</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO Artifact / Persistent / Federate / Artifact Resolution SOAP</td>
</tr>
<tr>
<td>3</td>
<td>MNI IdP-Initiated / SOAP (SP may use HTTP Redirect)</td>
</tr>
<tr>
<td>4</td>
<td>SLO SP-Initiated / SOAP (SP Lite / IdP Lite may use HTTP Redirect)</td>
</tr>
<tr>
<td>5</td>
<td>Web SSO Artifact / Persistent / Not Federated / Artifact Resolution SOAP</td>
</tr>
<tr>
<td>6</td>
<td>SLO IdP-initiated / SOAP (SP Lite / IdP Lite may use HTTP Redirect)</td>
</tr>
<tr>
<td>7</td>
<td>Web SSO Artifact / Artifact Resolution SOAP</td>
</tr>
<tr>
<td>8</td>
<td>MNI SP-Initiated / SOAP (SP may use HTTP Redirect)</td>
</tr>
<tr>
<td>9</td>
<td>SLO IdP-Initiated / SOAP (SP Lite / IdP Lite may use HTTP Redirect)</td>
</tr>
<tr>
<td>10</td>
<td>Web SSO Artifact / Artifact Resolution SOAP</td>
</tr>
<tr>
<td>11</td>
<td>SLO IdP-Initiated / HTTP redirect (signed)</td>
</tr>
</tbody>
</table>

Test Steps Details

1. User is logged into SP. IdP enables encryption of NameId and Assertions.

 IdP CONFIRM: IdP has enabled encryption.

2. User/SP does Single Sign-On with Persistent Name Identifier and with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is sent through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through Artifact binding. The IdP and SP resolve the artifact via a SOAP binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

 IdP CONFIRM: Artifact resolution is properly done.

 IdP CONFIRM: User has been federated

 SP CONFIRM: IdP returns signed SAML Response through HTTP Artifact binding.

 SP CONFIRM: Artifact resolution is properly done.
3. IdP sends signed ManageNameIdRequest message to the SP using SOAP binding (SP modes may use HTTP Redirect binding). SP returns signed ManageNameIdResponse message using SOAP binding. SP Lite and IdP Lite modes omit this step.

 SP CONFIRM: Receives signed ManageNameIdRequest on SOAP binding (or possibly HTTP Redirect binding for SP modes).

 IdP CONFIRM: Receives signed ManageNameIdResponse on SOAP binding (or possibly HTTP Redirect binding for SP modes).

4. SP sends a signed LogoutRequest message to IdP using SOAP binding (SP Lite and IdP Lite modes may use HTTP Redirect binding). IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).

 SP CONFIRM: Receives signed LogoutResponse on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).

5. User/SP does Single Sign-On with Federation already done where AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is sent through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through Artifact binding. The IdP and SP resolve the artifact via a SOAP binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect Binding.

 IdP CONFIRM: Artifact resolution is properly done.

 SP CONFIRM: IdP returns signed SAML Response through HTTP Artifact binding.

 SP CONFIRM: Artifact resolution is properly done.

6. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using SOAP binding (SP Lite and IdP Lite modes may use HTTP Redirect binding). SP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).

 SP CONFIRM: Receives signed LogoutResponse on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).

7. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through Artifact binding. The IdP and SP resolve the artifact via SOAP binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

 IdP CONFIRM: Artifact resolution is properly done.

 IdP CONFIRM: User has been federated

 SP CONFIRM: IdP returns signed SAML Response through HTTP Artifact binding.

 SP CONFIRM: Artifact resolution is properly done.
8. SP sends signed ManageNameIdRequest message to the IdP using SOAP binding (SP modes may use HTTP Redirect binding). IdP returns signed ManageNameIdResponse message using SOAP binding. SP Lite and IdP Lite modes omit this step.

 IdP CONFIRM: Receives signed ManageNameIdRequest on SOAP binding (or possibly HTTP Redirect binding for SP modes).
 SP CONFIRM: Receives signed ManageNameIdResponse on SOAP binding (or possibly HTTP Redirect binding for SP modes).

9. IdP logs out User session. IdP sends a signed LogoutRequest message to IdP using SOAP binding (SP Lite and IdP Lite modes may use HTTP Redirect binding). SP returns a signed LogoutResponse message.

 SP CONFIRM: Receives signed LogoutRequest on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).
 IdP CONFIRM: Receives signed LogoutResponse on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).

10. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through Artifact binding. The IdP and SP resolve the artifact via a SOAP binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 IdP CONFIRM: Artifact resolution is properly done.
 SP CONFIRM: IdP returns signed SAML Response through HTTP Artifact binding.
 SP CONFIRM: Artifact resolution is properly done.

11. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using SOAP binding (SP Lite and IdP Lite modes may use HTTP Redirect binding). SP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).
 SP CONFIRM: Receives signed LogoutResponse on SOAP binding (or possibly HTTP Redirect binding for SP Lite and IdP Lite modes).
Test Case C – POST Binding

Preconditions: Metadata exchanged and loaded
Conformance Modes: POST Binding

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encrypted Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO / POST (signed) / Persistent / Federate</td>
</tr>
<tr>
<td>3</td>
<td>MNI IdP-Initiated / POST (signed)</td>
</tr>
<tr>
<td>4</td>
<td>SLO SP-Initiated / POST (signed)</td>
</tr>
<tr>
<td>5</td>
<td>Web SSO POST (signed) / Not Federated</td>
</tr>
<tr>
<td>6</td>
<td>SLO IdP-initiated / POST (signed)</td>
</tr>
<tr>
<td>7</td>
<td>Web SSO POST (signed)</td>
</tr>
<tr>
<td>8</td>
<td>MNI IdP-initiated / POST / Terminate</td>
</tr>
<tr>
<td>9</td>
<td>Web SSO POST (signed)</td>
</tr>
<tr>
<td>10</td>
<td>MNI SP-Initiated / POST (signed)</td>
</tr>
<tr>
<td>11</td>
<td>SLO SP-Initiated / POST (signed)</td>
</tr>
<tr>
<td>12</td>
<td>Web SSO POST (signed)</td>
</tr>
<tr>
<td>13</td>
<td>SLO IdP-Initiated / POST (signed)</td>
</tr>
</tbody>
</table>

Test Steps Details

1. User is logged into SP. IdP enables encryption of NameId and Assertion.
 IdP CONFIRM: IdP has enabled encryption.

2. User/SP does Single Sign-On with Persistent Name Identifier and with Federate where AllowCreate
 is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP
 POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message
 through HTTP POST binding.
 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP
 POST binding.
 IdP CONFIRM: User has been federated
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

3. IdP sends signed ManageNameIdRequest message to the SP using HTTP POST binding. SP returns
 signed ManageNameIdResponse message using HTTP POST binding.
 SP CONFIRM: Receives signed ManageNameIdRequest on HTTP POST binding.
 IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.

4. SP sends a signed LogoutRequest message to IdP using HTTP POST binding. IdP logs out User
 session. IdP returns a signed LogoutResponse message.
 IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.
SP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

5. User/SP does Single Sign-On with Federation already done where AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

6. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP POST binding. SP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.
 SP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

7. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

8. IdP sends signed ManageNameIdRequest message with the Terminate element to the SP using HTTP POST binding. User session is terminated. SP returns signed ManageNameIdResponse message using HTTP POST binding.

 SP CONFIRM: Receives signed ManageNameIdRequest with Terminate flag on HTTP POST binding.
 SP CONFIRM: User session is terminated.
 IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.
 IdP CONFIRM: User session is terminated.

9. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

10. SP sends signed ManageNameIdRequest message to the IdP using HTTP POST binding. IdP returns signed ManageNameIdResponse message using HTTP POST binding.

 IdP CONFIRM: Receives signed ManageNameIdRequest on HTTP POST binding.
 SP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.

11. SP sends a signed LogoutRequest message to IdP using HTTP POST binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.
12. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

13. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP POST binding. SP returns a signed LogoutResponse message.

SP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.

IdP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.
Test Case D – Extended SAML Modes

Preconditions: Metadata exchanged and loaded

Conformance Modes: IdP Extended, SP Extended

Background on IdP Proxy

The IdP Proxy feature requires two IdP implementations and one SP implementation. If we have teams A and B, the following diagram depicts the roles of the test participants, assuming that IdP_A and SP_B are the implementations under test:

![Diagram of IdP Proxy](image)

Background on Name Identifier Mapping Feature

The name identifier mapping feature requires that an IdP provide an indirect reference for a principal at SP_A in response to a request from SP_B. Assuming again that teams A and B are testing IdP_A and SP_B, it is necessary for the principal to federate her identity at both SP_B and SP_A with IdP_A. This can be depicted as follows:

![Diagram of Name Identifier Mapping](image)

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encryption Enabled</td>
</tr>
<tr>
<td>2</td>
<td>ProxyCount=0 (proxy disallowed)</td>
</tr>
<tr>
<td>3</td>
<td>Web SSO HTTP Redirect (signed) to IdP_A</td>
</tr>
<tr>
<td>4</td>
<td>SLO SP-initiated / HTTP Redirect</td>
</tr>
<tr>
<td>5</td>
<td>ProxyCount missing (proxy allowed)</td>
</tr>
<tr>
<td>6</td>
<td>Web SSO / HTTP Redirect (signed) to IdP_A</td>
</tr>
<tr>
<td>7</td>
<td>SLO SP-initiated / HTTP Redirect</td>
</tr>
<tr>
<td>8</td>
<td>ProxyCount=1 (proxy allowed)</td>
</tr>
</tbody>
</table>
Test Steps Details

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Web SSO / HTTP Redirect (signed)</td>
</tr>
<tr>
<td>10</td>
<td>SLO SP-initiated / HTTP Redirect</td>
</tr>
<tr>
<td>11</td>
<td>Web SSO HTTP Redirect (signed) / Persistent</td>
</tr>
<tr>
<td>12</td>
<td>SLO IdP-initiated / HTTP Redirect</td>
</tr>
<tr>
<td>13</td>
<td>NameIDMappingRequest / NameIDMappingResponse</td>
</tr>
</tbody>
</table>

1. IdP_A and IdP_B enables encryption of NameId and Assertion.
 - IdP_A CONFIRM: IdP_A has enabled encryption.
 - IdP_B CONFIRM: IdP_B has enabled encryption.

2. SP sets ProxyCount=0 where proxy is disallowed.
 - SP CONFIRM: SP has disallowed proxy.

3. User/SP does Single Sign-On. SP communication to the IdP_A for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP_A returns a signed SAML Response message through HTTP POST binding.
 - IdP_A CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - SP CONFIRM: IdP_A returns signed SAML Response through HTTP POST binding.

4. SP sends a signed LogoutRequest message to IdP_A using HTTP Redirect binding. IdP_A logs out User session. IdP_A returns a signed LogoutResponse message.
 - IdP_A CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 - SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

5. SP removes ProxyCount where proxy is allowed.
 - SP CONFIRM: SP has allowed proxy.

6. User/SP does Single Sign-On. SP communication to the IdP_A for the SAML Authentication Request is through HTTP Redirect binding. IdP_A proxies the Authentication Request to IdP_B. IdP_B provides assertion of User to IdP_A in a SAML Response message through HTTP POST binding and IdP_A returns a signed SAML Response message through HTTP POST binding.
 - IdP_A CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - IdP_A CONFIRM: IdP_A proxies Authentication Request.
 - SP CONFIRM: IdP_A returns signed SAML Response through HTTP POST binding.

7. SP sends a signed LogoutRequest message to IdP_A using HTTP Redirect binding. IdP_A logs out User session. IdP_A returns a signed LogoutResponse message.
 - IdP_A CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 - SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

8. SP sets ProxyCount=1 where proxy is allowed.
 - SP CONFIRM: SP has allowed 1 proxy.
9. User/SP does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP proxies the Authentication Request to IdP. IdP provides assertion of User to IdP in a SAML Response message through HTTP POST binding and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 IdP CONFIRM: IdP proxies Authentication Request.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

10. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receiving signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: Receiving signed LogoutResponse on HTTP Redirect binding.

11. User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 IdP CONFIRM: User has been federated
 SP CONFIRM: IdP returns signed SAML Response through HTTP Redirect binding.

12. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP returns a signed LogoutResponse message.

 SP CONFIRM: Receiving signed LogoutRequest on HTTP Redirect binding.
 IdP CONFIRM: Receiving signed LogoutResponse on HTTP Redirect binding.

13. SP sends NameIdMapping Request message to the IdP requesting an alternative name identifier for User. IdP maps the request to the User identity from SP. IdP returns signed NameIdMappingResponse message using HTTP POST binding.

 IdP CONFIRM: Receiving NameIdMapping Request.
 SP CONFIRM: Receiving NameIdMappingResponse Response.
Test Case E – IDP Introduction

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite

NOTE – IdP Lite and SP Lite actors are to ignore Name ID Management steps

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enables Encryption / Clear Cookies</td>
</tr>
<tr>
<td>2</td>
<td>User logs to IdP_A / IdP_A written to CDC</td>
</tr>
<tr>
<td>3</td>
<td>User logs to IdP_B Login / IdP_B written to CDC</td>
</tr>
<tr>
<td>4</td>
<td>User logs to SP / SP reads cookie / User selects or redirected to IdP_A</td>
</tr>
<tr>
<td>6</td>
<td>SLO IdP_B -Initiated / HTTP Redirect</td>
</tr>
<tr>
<td>7</td>
<td>User closes browser / CDC is removed</td>
</tr>
</tbody>
</table>

Test Step Detail

1. Both IdPs enable encryption of NameId and Assertion. Cookies are cleared from User Browser

 IdP_A CONFIRM: IdP_A has enabled encryption.

2. User logs at IdP_A. Cookie is set in common domain with IdP_A appended to list of IdPs.

 IdP_A CONFIRM: User logged in, cookie is set in common domain and IdP_A appended to end of IdP list in cookie.

3. User logs at IdP_B. IdP_B appended to list of IdPs in CDC.

 IdP_B CONFIRM: User logged in and IdP_B appended to end of IdP list in CDC.

4. User/SP does Single Sign-On using a common domain cookie. SP reads cookie. Depending on SP implementation, either User is presented list of IdPs and selects IdP_A for authentication or SP redirects User to IdP_A for authentication. SP communication to the IdP_A for the SAML Authentication Request is through HTTP Redirect binding. IdP_A provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP_A CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

 SP CONFIRM: Cookie was read and IdP_A and IdP_B were present in CDC.

 SP CONFIRM: IdP_A returns signed SAML Response through HTTP POST binding.

5. SP does SLO. SP sends a signed LogoutRequest message to IdP_A using HTTP Redirect binding.

 IdP_A returns a signed LogoutResponse message. User is logged out.

 IdP_A CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

 SP CONFIRM: User is logged out.

6. User closes browser. CDC is removed.

 User CONFIRM: CDC is removed once browser is closed.
Test Case F – Single Session Logout

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite

NOTE – IdP Lite and SP Lite actors are to ignore Name ID Management steps

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web SSO (Browser A) / Federate / HTTP Redirect</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO (Browser B) HTTP Redirect</td>
</tr>
<tr>
<td>3</td>
<td>SLO (Browser A) SP-Initiated / HTTP redirect (signed)</td>
</tr>
<tr>
<td></td>
<td>Browser B session remains active</td>
</tr>
<tr>
<td>4</td>
<td>Web SSO (Browser A) HTTP Redirect</td>
</tr>
<tr>
<td>5</td>
<td>SLO (Browser A) IdP-Initiated / HTTP redirect (signed)</td>
</tr>
<tr>
<td></td>
<td>Browser B session remains active</td>
</tr>
<tr>
<td>6</td>
<td>MNI SP-initiated (Browser B) / Redirect (signed) / Terminate</td>
</tr>
</tbody>
</table>

Test Steps

1. User A/Browser A does Single Sign-On with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User A and IdP returns a signed SAML Response message through HTTP POST binding.

 - **IdP CONFIRM:** SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - **IdP CONFIRM:** User A has been federated.
 - **IdP CONFIRM:** User A has been logged in through Browser A (Session A).
 - **SP CONFIRM:** IdP returns signed SAML Response through HTTP POST binding.

2. User A/Browser B does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User B and IdP returns a signed SAML Response message through HTTP POST binding.

 - **IdP CONFIRM:** SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - **IdP CONFIRM:** User B has been logged in through Browser B (Session B).
 - **SP CONFIRM:** IdP returns signed SAML Response through HTTP POST binding.

3. User A/Browser A logs off of SP. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User A in Browser A (Session A). User A remains logged in through Browser B (Session B). IdP returns a signed LogoutResponse message.

 - **IdP CONFIRM:** Receives signed LogoutRequest on HTTP Redirect binding.
 - **IdP CONFIRM:** User A logs out in Browser A (Session A).
 - **IdP CONFIRM:** User A is logged in through Browser B (Session B).
 - **SP CONFIRM:** Receives signed LogoutResponse on HTTP Redirect binding.
Liberty Alliance Project
SAML 2.0 Test Steps
Version 3.1

SP CONFIRM: User A logs out in Browser A (Session A).
IdP CONFIRM: User A is logged in through Browser B (Session B).

4. User A/Browser A does Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User A and IdP returns a signed SAML Response message through HTTP POST binding.
 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 IdP CONFIRM: User A has been logged in through Browser A (Session A).
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

5. User A/Browser A logs off of IdP. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP logs out User A in Browser A (Session A). User A remains logged in through Browser B (Session B). SP returns a signed LogoutResponse message.
 SP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: User A logs out in Browser A (Session A).
 SP CONFIRM: User A is logged in through Browser B (Session B).
 IdP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.
 IdP CONFIRM: User A logs out in Browser A (Session A).
 IdP CONFIRM: User A is logged out in through Browser B (Session B).

6. SP sends signed ManageNameIdRequest message with the Terminate element to the IdP using HTTP Redirect binding. Federation for User A is terminated. IdP returns signed ManageNameIdResponse message using HTTP Redirect binding. User A logs out of Browser B (Session B).
 IdP CONFIRM: Receives signed ManageNameIdRequest with Terminate flag on HTTP Redirect binding.
 IdP CONFIRM: Federation of User A is terminated.
 IdP CONFIRM: User A is logged out in Browser B (Session B).
 SP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.
 SP CONFIRM: Federation of User A is terminated.
 SP CONFIRM: User A is logged out in Browser B (Session B).
Test Case G – Unsolicited <Response>

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IdP Unsolicited SSO Response / Transient / HTTP POST (signed)</td>
</tr>
<tr>
<td>2</td>
<td>SLO SP-Initiated / HTTP redirect (signed)</td>
</tr>
<tr>
<td>3</td>
<td>IdP Unsolicited SSO Response / Transient / HTTP artifact / Artifact Resolution (SOAP)</td>
</tr>
<tr>
<td>4</td>
<td>SLO IdP-Initiated / HTTP redirect (signed)</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User/IdP does Single Sign-On. IdP provides assertion of User and Name ID is Transient. IdP sends a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: User has been federated
 SP CONFIRM: IdP sends signed SAML Response through HTTP POST binding.

2. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

3. User/IdP does Single Sign-On. IdP provides assertion of User and Name ID is Transient. IdP sends a signed SAML Response message through HTTP Artifact using an HTTP Redirect URL. The IdP and SP resolve the artifact via a SOAP binding.

 IdP CONFIRM: Artifact resolution is properly done.
 SP CONFIRM: User has been federated
 IdP CONFIRM: IdP sends signed SAML Response through HTTP Artifact.
 SP CONFIRM: Artifact resolution is properly done.

4. IdP sends a signed LogoutRequest message to SP using SOAP binding. SP logs out User session. SP returns a signed LogoutResponse message.

 SP CONFIRM: Receives signed LogoutRequest on SOAP binding.
 IdP CONFIRM: Receives signed LogoutResponse on SOAP binding.
Test Case H – Affiliations

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPNameQualifier=[affiliation id]</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO HTTP Redirect / Persistent / Federate</td>
</tr>
<tr>
<td>3</td>
<td>SLO IdP-initiated / HTTP Redirect (signed)</td>
</tr>
<tr>
<td>4</td>
<td>Web SSO HTTP Redirect / Not Federate</td>
</tr>
<tr>
<td>5</td>
<td>SLO SP-initiated / HTTP Redirect (signed)</td>
</tr>
<tr>
<td>6</td>
<td>SPNameQualifier=[sp provider id]</td>
</tr>
</tbody>
</table>

Test Step Detail

1. SP sets Name Qualifier to Affiliation ID.
 SP CONFIRM: SPNameQualifier=[affiliation id]

2. User/SP does Single Sign-On with Persistent Name Identifier and with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.
 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 IdP CONFIRM: User has been federated
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

3. IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP returns a signed LogoutResponse message.
 SP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 IdP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

4. User/SP does Single Sign-On with Federation already done where AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.
 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

5. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.
 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.
 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.
6. SP sets Name Qualifier to SP Provider ID.

SP CONFIRM: SPNameQualifier=[sp provider id]

NOTE: It is recommended that the SP verifies it has changed back the SPNameQualifier through a SSO/SLO test with other participants.
Test Case I – Multiple SP Logout

Preconditions: Metadata exchanged and loaded

Conformance Modes: IdP, SP, IdP Lite, SP Lite

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User A Web SSO to IdP through SP_A</td>
</tr>
<tr>
<td>2</td>
<td>User A logsins to SP_B and authenticated by IdP (same session id)</td>
</tr>
<tr>
<td>3</td>
<td>SLO SP_A-initiated to IdP</td>
</tr>
<tr>
<td>4</td>
<td>IdP-initiated LogoutRequest to SP_B / session ends</td>
</tr>
<tr>
<td>5</td>
<td>User A Web SSO to IdP through SP_B</td>
</tr>
<tr>
<td>6</td>
<td>User A logsins to SP_A and authenticated by IdP (same session id)</td>
</tr>
<tr>
<td>7</td>
<td>SLO IdP-initiated to SP_B</td>
</tr>
<tr>
<td>8</td>
<td>IdP-initiated LogoutRequest to SP_A / session ends</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User A at SP_A performs Single Sign-On (any profile) to IdP.

 IdP CONFIRM: SP_A successfully communicated SAML Authentication Request and IdP sent back Assertion for User A.

 SP_A CONFIRM: IdP returns signed SAML Response and User A is authenticated.

2. User A logsins to SP_B and is authenticated by IdP with same session id.

 IdP CONFIRM: SP_B successfully communicated SAML Authentication Request and IdP sent back Assertion for User A and maintained same session id as in Step 1.

 SP_B CONFIRM: IdP returns signed SAML Response and User A is authenticated.

3. User A does SSO from SP_A to IdP.

 IdP CONFIRM: SP_A sends LogoutRequest for User A and a LogoutResponse is returned.

 SP_A CONFIRM: A LogoutRequest is sent to IdP, IdP returns a LogoutResponse and User A is logged out.

4. LogoutRequest is sent to SP_B from IdP. User is logged out of SP_B and federation is ended.

 IdP CONFIRM: LogoutRequest is sent to SP_A and receives back LogoutResponse.

 IdP CONFIRM: Federation for User A is ended.

 SP_B CONFIRM: IdP sends LogoutResponse, a LogoutResponse is returned and User A is logged out.

5. User A at SP_B performs Single Sign-On (any profile) to IdP.

 IdP CONFIRM: SP_B successfully communicated SAML Authentication Request and IdP sent back Assertion for User A.

 IdP CONFIRM: User has been federated.

 SP_B CONFIRM: IdP returns signed SAML Response and User A is authenticated.
6. User A logins to SP_A and is authenticated by IdP with same session id.

 IdP CONFIRM: SP_A successfully communicated SAML Authentication Request and IdP sent back Assertion for User A and maintained same session id as in Step 5.

 SP_A CONFIRM: IdP returns signed SAML Response and User A is authenticated.

7. User A does SSO from IdP to SP_B.

 IdP CONFIRM: SP_B is sent LogoutRequest for User A and a LogoutResponse is returned.

 SP_B CONFIRM: IdP sends a LogoutRequest, a LogoutResponse is returned and User A is logged out.

8. LogoutRequest is sent to SP_A from IdP. User is logged out of SP_A and federation is ended.

 IdP CONFIRM: LogoutRequest is sent to SP_A and receives back LogoutResponse.

 IdP CONFIRM: Federation for User A is ended.

 SP_A CONFIRM: IdP sends LogoutResponse, a LogoutResponse is returned and User A is logged out.
Test Case J – Force Authentication and Passive Authentication

Preconditions: Metadata exchanged and loaded

Conformance Modes (Required): IdP, IdP Lite

Conformance Modes (Optional): SP, SP Lite

NOTE: Support of IsPassive and ForceAuthn is optional for SP and SP Lite products.

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User logins to IdP to create active session.</td>
</tr>
<tr>
<td>2</td>
<td>Configure SP to make IsPassive=TRUE</td>
</tr>
<tr>
<td>3</td>
<td>Web SSO HTTP redirect / IdP authenticates user without user login</td>
</tr>
<tr>
<td>4</td>
<td>SLO SP-initiated to IdP</td>
</tr>
<tr>
<td>5</td>
<td>Configure SP to make IsPassive=FALSE</td>
</tr>
<tr>
<td>6</td>
<td>Web SSO HTTP redirect / User logins at IdP / User is authenticated</td>
</tr>
<tr>
<td>7</td>
<td>SLO SP-initiated to IdP</td>
</tr>
<tr>
<td>8</td>
<td>User logins to IdP to create active session.</td>
</tr>
<tr>
<td>9</td>
<td>Configure SP to make ForceAuthn=TRUE</td>
</tr>
<tr>
<td>10</td>
<td>Web SSO HTTP redirect / User logins at IdP / User is authenticated</td>
</tr>
<tr>
<td>11</td>
<td>SLO SP-initiated to IdP</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User logins at IdP and creates and active session
 - **IdP CONFIRM:** User logged in.

2. SP is configured to make IsPassive set to TRUE.
 - **SP CONFIRM:** SP is configured IsPassive=TRUE.

3. User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User without interacting with the user. IdP returns a signed SAML Response message through HTTP POST binding.
 - **IdP CONFIRM:** SP successfully communicated SAML Authentication Request through HTTP Redirect binding.
 - **IdP CONFIRM:** User does not interact with IdP.
 - **SP CONFIRM:** IdP returns assertion in signed SAML Response through HTTP POST binding.

4. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.
 - **IdP CONFIRM:** Receives signed LogoutRequest on HTTP Redirect binding.
 - **SP CONFIRM:** Receives signed LogoutResponse on HTTP Redirect binding.
 - **SP CONFIRM:** User is logged out.

5. SP is configured to make IsPassive set to FALSE.
 - **SP CONFIRM:** SP is configured IsPassive=FALSE.
6. User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP interacts with and authenticates the user. IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

 IdP CONFIRM: User does interact with IdP.

 SP CONFIRM: IdP returns assertion in signed SAML Response through HTTP POST binding.

7. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

8. User logs in at IdP and creates an active session

 IdP CONFIRM: User logged in.

9. SP is configured to make ForceAuthn set to TRUE.

 SP CONFIRM: SP is configured IsPassive=TRUE.

10. User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP interacts with User and authenticates the User. IdP provides assertion of User. IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

 IdP CONFIRM: User interacts with IdP and is authenticated.

 SP CONFIRM: IdP returns assertion in signed SAML Response through HTTP POST binding.

11. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

 IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

 SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

 SP CONFIRM: User is logged out.
Test Case K – ECP

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP, IdP Lite, SP Lite, ECP

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Federate (NameIDPolicy, AllowCreate=True)</td>
</tr>
<tr>
<td>2</td>
<td>Enhanced ClientProxy SSO, PAOS</td>
</tr>
<tr>
<td>3</td>
<td>ECP conveys Response to SP</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User attempts to access SP through ECP. Settings are Persistent Name Identifier and with Federate where AllowCreate is set to TRUE to SP.
 - **ECP CONFIRM:** Connects to SP.
 - **SP CONFIRM:** ECP connects.

2. SP issues SAML AuthnRequest message to ECP through PAOS binding. ECP sends SAML Request message to IdP through SOAP binding. IdP returns assertion in SAML Response to ECP.
 - **IdP CONFIRM:** ECP successfully communicated SAML Authentication Request through SOAP binding.
 - **SP CONFIRM:** IdP returns signed SAML Response through HTTP SOAP binding.

3. ECP conveys Response to SP. SP grants access to User. User closes browser and session ends.
 - **SP CONFIRM:** Proper Response is received.
 - **ECP CONFIRM:** User is granted access to SP.
Test Case L – SAML Authentication Authority

Conformance Modes: SAML Authentication Authority

Preconditions: Metadata exchanged and loaded

Note: Section [AuthenticationContexts] within this document describes the strength of the AuthnContext classes used for comparison.

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web SSO / POST (signed) / Persistent</td>
</tr>
<tr>
<td>2</td>
<td>AC Comparison=”exact” / HTTP Basic Authentication</td>
</tr>
<tr>
<td>3</td>
<td>Authentication Query / SOAP</td>
</tr>
<tr>
<td>4</td>
<td>AC Comparison=”better”</td>
</tr>
<tr>
<td>5</td>
<td>Authentication Query / SOAP</td>
</tr>
<tr>
<td>6</td>
<td>AC Comparison=”minimum”</td>
</tr>
<tr>
<td>7</td>
<td>Authentication Query / SOAP</td>
</tr>
<tr>
<td>8</td>
<td>AC Comparison=”maximum”</td>
</tr>
<tr>
<td>9</td>
<td>Authentication Query / SOAP</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.
 - IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 - IdP CONFIRM: User has been federated
 - SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

2. SAML Requester sets AC comparison to “exact”. SAML Requester/Responder enables HTTP Basic Authentication.
 - SAML Requester CONFIRM: AC comparison=”exact”.
 - SAML Requester CONFIRM: HTTP Basic Authentication enabled.
 - SAML Responder CONFIRM: HTTP Basic Authentication enabled.

3. SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 - SAML Responder CONFIRM: SAML Requester sent Authentication Query.
 - SAML Requester CONFIRM: SAML Responder returned the SAML Response.

4. SAML Requester sets AC comparison to “better”.
 - SAML Requester CONFIRM: AC comparison=”better”.
5. SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 SAML Responder CONFIRM: SAML Requester sent Authentication Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.

6. SAML Requester sets AC comparison to “minimum”.
 SAML Requester CONFIRM: AC comparison=“minimum”.

7. SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 SAML Responder CONFIRM: SAML Requester sent Authentication Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.

8. SAML Requester sets AC comparison to “maximum”.
 SAML Requester CONFIRM: AC comparison=“maximum”.

9. SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 SAML Responder CONFIRM: SAML Requester sent Authentication Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.
Test Case M – SAML Attribute Authority

Conformance Modes: SAML Attribute Authority
Preconditions: Metadata exchanged and loaded

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web SSO / POST (signed) / Persistent</td>
</tr>
<tr>
<td>2</td>
<td>Attribute Query No Attributes</td>
</tr>
<tr>
<td>3</td>
<td>Attribute Query / SOAP</td>
</tr>
<tr>
<td>4</td>
<td>Attribute Query Attribute Named</td>
</tr>
<tr>
<td>5</td>
<td>Attribute Query / SOAP</td>
</tr>
<tr>
<td>6</td>
<td>Attribute Query Attribute Value</td>
</tr>
<tr>
<td>7</td>
<td>Attribute Query / SOAP</td>
</tr>
<tr>
<td>8</td>
<td>Encrypted Attribute / Attribute Query Attribute Named</td>
</tr>
<tr>
<td>9</td>
<td>Attribute Query / SOAP</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.
 IdP CONFIRM: User has been federated
 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

2. SAML Responder sets attribute query to no attributes.

 SAML Responder CONFIRM: Attribute Query No Attributes.

3. SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

 SAML Responder CONFIRM: SAML Requester sent Attribute Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.

4. SAML Responder sets attribute query to attribute named.

 SAML Responder CONFIRM: Attribute Query Attribute Named.

5. SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

 SAML Responder CONFIRM: SAML Requester sent Attribute Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.
6. SAML Responder sets attribute query to attribute value.
 SAML Responder CONFIRM: Attribute Query Attribute Value.

7. SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 SAML Responder CONFIRM: SAML Requester sent Attribute Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.

8. SAML Responder sets attribute query to attribute named. SAML Responder enables attribute for encryption.
 SAML Responder CONFIRM: Attribute Query Attribute Named.
 SAML Responder CONFIRM: Encryption assertion enabled.

9. SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
 SAML Responder CONFIRM: SAML Requester sent Attribute Query.
 SAML Requester CONFIRM: SAML Responder returned the SAML Response.
Test Case N – SAML Authorization Decision Authority

Conformance Modes: SAML Authorization Decision Authority

Preconditions: Metadata exchanged and loaded

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web SSO / POST (signed) / Persistent</td>
</tr>
<tr>
<td>2</td>
<td>HTTP Basic Authentication</td>
</tr>
<tr>
<td>3</td>
<td>AuthzQuery Resource=never (never permitted)</td>
</tr>
<tr>
<td>4</td>
<td>Authorization Decision Query / SOAP</td>
</tr>
<tr>
<td>5</td>
<td>AuthzQuery Resource=maybe (permitted if auth match)</td>
</tr>
<tr>
<td>6</td>
<td>Authorization Decision Query / SOAP</td>
</tr>
<tr>
<td>7</td>
<td>AuthzQuery Resource=always (always permitted)</td>
</tr>
<tr>
<td>8</td>
<td>Authorization Decision Query / SOAP</td>
</tr>
</tbody>
</table>

Test Step Detail

1. User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

 IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

 IdP CONFIRM: User has been federated

 SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

2. SAML Requester enables HTTP Basic Authentication.

 SAML Requester CONFIRM: HTTP Basic Authentication enabled.

3. SAML Responder sets Authorization Query to never permitted which means subject is never authorized for access.

 SAML Responder CONFIRM: AuthzQuery Resource=never

4. SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

 SAML Responder CONFIRM: SAML Requester sent Authorization Query.

 SAML Requester CONFIRM: SAML Responder returned the SAML Response.

5. SAML Responder sets authorization query to maybe permitted if authentication is matched which means subject is authorized if it is a “particular” subject.

 SAML Responder CONFIRM: AuthzQuery Resource=maybe

6. SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
SAML Responder CONFIRM: SAML Requester sent Authorization Query.
SAML Requester CONFIRM: SAML Responder returned the SAML Response.

7. SAML Responder sets Authorization Query to always permitted which means subject is always authorized.
SAML Responder CONFIRM: AuthzQuery Resource=always

8. SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.
SAML Responder CONFIRM: SAML Requester sent Authorization Query.
SAML Requester CONFIRM: SAML Responder returned the SAML Response.
Test Case O – SAML URI Binding

Conformance Modes: SAML Attribute Authority, SAML Authorization Decision Authority, SAML Authentication Authority, SAML Requester

Preconditions: Metadata exchanged and loaded

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HTTP Basic Authentication</td>
</tr>
<tr>
<td>2</td>
<td>Request for Assertion by Identifier / SOAP</td>
</tr>
<tr>
<td>3</td>
<td>HTTP Basic Authentication</td>
</tr>
<tr>
<td>4</td>
<td>SAML URI Binding</td>
</tr>
</tbody>
</table>

Test Step Detail

1. Requester enables HTTP Basic Authentication
 Requester CONFIRM: HTTP Basic Authentication enabled.

2. Requester sends SAML Request message to Responder in SOAP over HTTP. Request message contains <AssertionIDRequest> and HTTP basic authentication. Assertion ID is assigned at test time. Responder returns identified <Assertion> in SAML Response in SOAP over HTTP.
 Requester and Responder CONFIRM: Use SOAP over HTTP
 Requester and Responder CONFIRM: Use HTTP basic authentication.
 Requester and Responder CONFIRM: Request message contains <AssertionIDRequest> for assigned assertion ID.
 Requester and Responder CONFIRM: Response message contains identified <Assertion>.

3. Requester enables HTTP Basic Authentication
 Requester CONFIRM: HTTP Basic Authentication enabled.

4. Requester sends HTTP GET message to Responder with URI containing assertion ID. Assertion ID assigned at test time. HTTP GET message contains HTTP basic authentication. Responder returns HTTP response with SAML Response containing assigned <Assertion>.
 Requester and Responder CONFIRM: Use HTTP basic authentication.
 Requester and Responder CONFIRM: HTTP GET URI contains assigned assertion ID.
 Requester and Responder CONFIRM: Assigned <Assertion> is returned in response.
Test Case P – Error Testing

Conformance Modes: IdP, SP, SP Lite

Preconditions: Metadata exchanged and loaded

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artifact Refused</td>
</tr>
<tr>
<td>2</td>
<td>Successful Response Message</td>
</tr>
<tr>
<td>3</td>
<td>Repost of Assertion</td>
</tr>
<tr>
<td>4</td>
<td>Altered data, signature mismatch</td>
</tr>
<tr>
<td>5</td>
<td>Wrong key used to sign</td>
</tr>
<tr>
<td>6</td>
<td>SubjectConfirmation Recipient != assertion service consumer URL</td>
</tr>
<tr>
<td>7</td>
<td>Unknown SubjectConfirmationMethod</td>
</tr>
<tr>
<td>8</td>
<td>IncorrectAudienceRestriction != requestor</td>
</tr>
<tr>
<td>9</td>
<td>SubjectConfirmation NoOnOrAfter expired</td>
</tr>
<tr>
<td>10</td>
<td>Unknown Condition</td>
</tr>
</tbody>
</table>

Test Step Detail

NOTE – Test Steps 2-9 involve the Liberty Error Test Tool. Metadata for conducting these tests will be exchanged.

2. Test Harness POSTs an unsolicited SAML Response message containing a valid assertion.
 SP CONFIRM: SAML Response was received and assertion accepted.

3. Test Harness re-POSTs the assertion that was successful during the initialization of this test sequence.
 SP CONFIRM: Assertions are not replayed within the validity period of the assertion.

4. The assertion of the SAML Response from Step 2 is altered and sent without re-signing in a HTTP POST from Test Harness.
 SP CONFIRM: SP rejects the message.

5. The assertion of the SAML Response from Step 2 is sent but signed with the wrong signing key in a HTTP POST from Test Harness.
 SP CONFIRM: SP rejects the message.

6. The Test Harness constructs a SAML Response message with an incorrect Recipient attribute.
 Recipient attribute is in the <SubjectConfirmationData> element.
 SP CONFIRM: SP detects and rejects the message.
7. The Test Harness sends an altered assertion in the SAML Response. A different Method URN is substituted in the assertion’s `<SubjectConfirmation>` element other than the required Method of `urn:oasis:names:tc:SAML:2.0:cm:bearer`.

 SP CONFIRM: SP detects and rejects the message.

8. The Test Harness POSTs a SAML Response containing an assertion which does not contain an `<AudienceRestriction>` including the SP's unique identifier as an `<Audience>`.

 SP CONFIRM: SP rejects the assertion.

9. The Test Harness sets the `NotOnOrAfter` attribute to a future value that has passed.

 SP CONFIRM: The SP to reject the assertion because of the `NotOnOrAfter` attribute.

10. The Test Harness includes a `<Condition>` extension element in the `<Conditions>` element of the assertion that cannot be understood.

 SP CONFIRM: The SP rejects the assertion.
Test Case Q – eGov Profile

Preconditions: Metadata exchanged and loaded
Conformance Modes: IdP, SP

Test Step Overview

<table>
<thead>
<tr>
<th>Steps</th>
<th>Action/Message/Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web SSO AuthnRequest / HTTP Redirect (signed)</td>
</tr>
<tr>
<td>2</td>
<td>Web SSO AuthnResponse / HTTP POST (signed)</td>
</tr>
<tr>
<td>3</td>
<td>SLO SP-initiated / HTTP Redirect(signed)</td>
</tr>
<tr>
<td>4</td>
<td>IdP Discovery</td>
</tr>
<tr>
<td>5</td>
<td>Multiple SP Logout</td>
</tr>
<tr>
<td>6</td>
<td>Force Authentication and IsPassive</td>
</tr>
</tbody>
</table>

Pre-Test Setup

1. TLS certificates MUST be trusted by default in commonly used browsers. Certificates and security toolkits MUST follow GSA requirements.
2. eGov approved FIPS certificates must be installed.

Test Steps Details

1. SP sends a SAML Authentication Request to the IdP through HTTP Redirect binding.
 Authentication Request must be signed and delivered over TLS. The following list contains either requirements for the request which must occur, conditional actions which if done must be handled in a specific way or optional conditions which may or may not be done.

 <AuthnRequest>

 REQUIRED: <Issuer> MUST be present, MUST be the identifier of the SP and MUST be a URL within the SP domain.
 CONDITIONAL: ProtocolBinding is optional but if present it MUST be urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST.
 CONDITIONAL: <RequestedAuthnContext> MAY be included in authentication request but if present, the Comparison attribute MUST be set to minimum.
 OPTIONAL: IsPassive MAY be used.
 OPTIONAL: Within <NameIDPolicy>, AllowCreate attribute MAY be present.
 CONDITIONAL: SP MAY set ForceAuthn to true. If ForceAuthn is set to TRUE, IsPassive MUST either be omitted or set to FALSE.
 CONDITIONAL: If SP sets ForceAuthn to true, IdP MUST authenticate regardless of user’s authentication session status.
 CONDITIONAL: Within <NameIDPolicy>, if Format is present, it MUST use one of the following:
 urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
 urn:oasis:names:tc:SAML:2.0:nameid-format: transient
2. IdP returns the Authentication Response with the assertion to the SP through HTTP POST binding over TLS to the SP’s <Assertion> Consumer Service. The following list contains either requirements for the request that must occur or optional conditions that may be done.

```xml
<Response>
  REQUIRED: Version attribute MUST be set to “2.0”.
  REQUIRED: Each <Response> MUST contain no more than one <EncryptedAssertion>.
  CONDITIONAL: Consent attribute MAY be used, but if used MUST use one of the following:
    urn:oasis:names:tc:SAML:2.0:consent:obtained
    urn:oasis:names:tc:SAML:2.0:consent:prior
    urn:oasis:names:tc:SAML:2.0:consent:current-implicit
    urn:oasis:names:tc:SAML:2.0:consent:current-explicit
    urn:oasis:names:tc:SAML:2.0:consent:unspecified
</Response>
```

```
<Assertion> element within the <Response>
  REQUIRED: An <Assertion> MUST be returned within <EncryptedAssertion> by the IdP and MUST be signed and encrypted.
  REQUIRED: Version MUST be 2.0.
  REQUIRED: <Issuer> MUST be present, MUST be the identifier of the IdP and MUST be a URL reference within the domain of the IdP.
  REQUIRED: There MUST be exactly one <Subject> per <Assertion>.
</Assertion>
```

```
<Subject> element within the <Assertion>
  REQUIRED: An <Assertion> MUST contain exactly one <Subject> indicating the end user to which <Assertion> pertains.
  REQUIRED: <NameID> MUST contain a Format attribute set either:
    urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
    urn:oasis:names:tc:SAML:2.0:nameid-format:transient
</Subject>
```

```
<AuthnStatement> element within the <Assertion>
  REQUIRED: <AuthnStatement> MUST include the SessionIndex of the end user.
  OPTIONAL: <AuthnStatement> MAY contain SessionNotOnOrAfter but SP is NOT REQUIRED to honor SessionNotOnOrAfter.
</AuthnStatement>
```

```
<AttributeStatement> element within the <Assertion>
  REQUIRED: The first transmission of an <Assertion> MUST contain exactly one <AttributeStatement> for a particular <Subject>. Each subsequent <Assertion> MUST contain no more than one <AttributeStatement>.
  REQUIRED: Each <Attribute> MUST not be encrypted.
  CONDITIONAL: If present, NameFormat of <Attribute> MUST be one of the following:
    urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified
    urn:oasis:names:tc:SAML:2.0:attrname-format:uri
    urn:oasis:names:tc:SAML:2.0:attrname-format:basic
</AttributeStatement>
```
REQUIRED: <Attribute> Name MUST be a URI.

CONDITIONAL: Where the definition of an attribute includes one or more descriptors for the attribute, FriendlyName, if present, MUST be one of the defined descriptors.

CONDITIONAL: If <AuthnStatement> accompanies <AttributeStatement>, the following attributes MUST be present and follow the specified format:

- `us:gov:e-authentication:basic:assuranceLevel` MUST be one of 1, 2, 3, 4, or test and use datatype of `xs:string`.
- `urn:oid:2.5.4.3` MUST have first name followed by optional middle name or initial followed by last name delimited by spaces and MUST be <= 256 characters in length and use datatype of `xs:string`.
- `us:gov:e-authentication:basic:specVer` MUST be “2.0” for this interface specification and use datatype of `xs:string`.

CONDITIONAL: These attributes are optional but may provide a richer attribute set for end user.

- `urn:oid:2.5.4.4` MUST be <= 128 characters in length and of datatype `xs:string`.
- `urn:oid:2.5.4.42` MUST be <= 128 characters in length and of datatype `xs:string`.
- `urn:oid:1.3.6.1.4.1.1466.101.120.34` MUST be <= 128 characters in length and of datatype `xs:string`.
- `urn:oid: 2.5.4.44` MUST be <= 20 characters in length and of datatype `xs:string`.
- `us:gov:e-authentication:basic:birthMonth` MUST be 2 digits and MUST contain a value in the range of 01 - 12 and of datatype `xs:integer`.
- `us:gov:e-authentication:basic:birthYear` MUST be 4 digits (yyyy) and of datatype `xs:integer`.
- `us:gov:e-authentication:basic:address1` MUST be <= 50 characters in length and of datatype `xs:string`.
- `us:gov:e-authentication:basic:address2` MUST be <= 50 characters in length and of datatype `xs:string`.
- `urn:oid:2.5.4.7` MUST be <= 28 characters in length and of datatype `xs:string`.
- `urn:oid:2.5.4.8` MUST be 2 character length state code and of datatype `xs:string`.
- `urn:oid:2.5.4.17` MUST be either 5 digit format or 5-digit-4-digit (including the dash) format and of datatype `xs:string`.

3. SP sends a signed LogoutRequest message to IdP over TLS 1.0 using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message over TSL 1.0 using the HTTP Redirect binding.

<Logout Request>

REQUIRED: Version attribute MUST be set to “2.0”.

<Logout Response>
REQUIRED: Version attribute MUST be set to “2.0”.

4. SP and IdP execute Test Case E as described in the test case except for in step D.4, SP reads CDC and displays both IdPs and User selects IdP.
 SP CONFIRM: Test Case E is executed as expected.
 SP CONFIRM: CDC is read and both IdPs are displayed for User selection.
 IdP CONFIRM: Test Case E is executed as expected.

5. SP and IdP execute Test Case I, Multiple SP Logout.
 SP CONFIRM: Test Case I is executed as expected.
 IdP CONFIRM: Test Case I is executed as expected.

 SP CONFIRM: Test Case J is executed as expected.
 IdP CONFIRM: Test Case J is executed as expected.
References

<table>
<thead>
<tr>
<th>Line</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>