Identity Theft Technical Overview

Washington D.C.
April 26, 2006
The United States Federal Trade Commission (FTC) defines identity theft as 'a fraud that is committed or attempted, using a person’s identifying information without authority'.
Questions to ask…

1. How does identity theft occur?
 - Obtain PII
 - Use or Sell for fraud

2. Why are we vulnerable?
 - Several isolated data warehouses
 - Little control of users over their PII
 - Lack of awareness or training

3. What are the threats?.
 1. Internet
 2. Insider threat
 3. Social Engineering
 4. Physical
Identity Lifecycle

1. Registration procedure
2. Storage Mechanisms
3. Access Control on usage (Authentication and Authorization)
4. Usability
5. Auditing and Accountability
Types of Technology Solutions

Policy Languages:
1. PPEL
2. P3P
3. SAML assertions
4. XACML

Cryptographic Tools:
1. PKI
2. Secret Splitting
3. Zero knowledge Proofs
4. Anonymous Credentials

Audit Mechanisms:
1. Standards
2. Policies
3. Performance
4. Application Controls
 Objective, Content, Retention etc.

Database Security:
1. Privacy Preserving Data Mining
2. Storage Requirements
3. Audit Database

Trust Management:
1. Access Control
2. Reputation Based Systems
3. Trust Negotiation
4. Transitive Trust
Policy Languages

- **Privacy Policies [PPEL/ P3P]:** Typically privacy policies state who the recipients will be for the user data, the purpose for which this data will be used, and how long the data will be retained.

- **Assertion Language [SAML 2.0]:**
 The Security Assertion Markup Language (SAML) is an XML-based framework for exchanging security information. This security information is expressed in the form of assertions about subjects, where a subject is an entity (either human or computer) that has an identity in some security domain.

- **Authorization Policy [XACML]:**
 - General-purpose authorization policy model and XML-based specification language
 - XACML is independent of SAML specification
 - Triple-based policy syntax: <Object, Subject, Action>
 - Negative authorization is supported
Cryptographic Tools

- Public Key Infrastructure
 - To establish and maintain a trustworthy networking environment

- Secret Sharing
 - method for distributing a secret amongst a group of participants, each of which is allocated a share of the secret. The secret can only be reconstructed when the shares are combined together; individual shares are of no use on their own.

- Zero Knowledge Proofs:
 - Interactive method for one party to prove to another that a (usually mathematical) statement is true, without revealing anything other than the veracity of the statement.

- Anonymous Credentials/ E-cash
Trust Management

- TM asks the question "Is someone trusted to take some action on some object?" and "why" trust is granted rather than immediately focusing on "how" cryptography can enforce it.
 - “Each citizen has the right to establish trust in his or her own way”
 - “Computers can alter the equation only by substituting the explicit power of cryptography for the implicit power of psychology.”
- Reputation System
- Automated Negotiation Systems (flexible policies)
Database Security

- **Database Security** can be broken down into the following key points of interest.
 - Server Security
 - Database Connections
 - Table Access Control
 - Restricting Database Access

- **Datamining:**
 - Also known as Knowledge-Discovery in Databases (KDD)
 - Process of automatically searching large volumes of data for patterns.
 - Applies computational techniques from statistics, machine learning and pattern recognition.
 - Privacy Threat versus tool?
Audit Mechanisms

- Define audit objective
- Standard for information system auditing
- Performance of audit work
- Reporting
- Security and Privacy concerns
 - Content
 - Retention
 - Access control (Authentication and Authorization)
- Application transaction lifecycle
Use of several security enhancing techniques cannot completely eliminate fraud and identity theft attempts. Therefore there is a fundamental need of strong audit mechanisms that can detect attacks, misuse and maintain a certain level of assurance in the system.

3 cases: 1) Individual 2) Data Custodian 3) Third Party
Technology/Id-Lifecycle Matrix

<table>
<thead>
<tr>
<th>Identity Lifecycle</th>
<th>Policy Types</th>
<th>Cryptographic Tools</th>
<th>Trust Management</th>
<th>Database Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration/Enrollment</td>
<td>Validation Policy</td>
<td>Challenge-Response Protocols, PKI</td>
<td>Automated Trust Negotiation</td>
<td>Encrypted Databases</td>
</tr>
<tr>
<td>Maintenance/Management</td>
<td>Privacy Policy, Attribute Release Policy</td>
<td>Revocation and update mechanism of the crypto tokens</td>
<td>Revocation, Credential Discovery Protocols</td>
<td>Consistent Databases, Recovery, Integrity of Databases</td>
</tr>
<tr>
<td>Termination</td>
<td>Privacy Policy</td>
<td>Revocation Mechanism</td>
<td>Revocation Mechanism</td>
<td>Consistent deletion</td>
</tr>
</tbody>
</table>
The implementation of the technical solutions depend on the policy and the laws in place.

Policy can be of different types depending on the purpose of the policy. Example:

- Validation policy (Enrollment)
- Authentication policy
- Integrity policy
- Privacy policy

Helps in Risk Analysis
Sentinel Top Complaint Categories
January 1 – December 31, 2005

Total Losses estimated by FTC in 2005 was over $680 million

1 Percentages are based on the total number of Sentinel complaints (686,683)
Problems (Why the explosion of ID-Theft)

- Gathering and trafficking of PII is increasing
- More exploits are bound to come with new applications-services being delivered.
Brainstorming session

- 1:15 to 3:45