Liberty Authentication Context Specification

Draft Version 1.2-05

12 April 2003

Editors:
John Kemp, IEEE-ISTO
Paul Madsen, Entrust

Contributors:
Xavier Serret, Gemplus
Tom Wason, IEEE-ISTO

Abstract:
If a service provider is to rely on the authentication of a Principal by an identity provider, the service provider may require information additional to the authentication itself to allow it to put the authentication in a trust context. This specification defines a syntax for the definition of authentication context statements and an initial list of Liberty authentication context classes.

Copyright © 2003 Liberty Alliance Project
Notice

Copyright © 2002,2003 ActivCard; American Express Travel Related Services; America Online, Inc.; Bank of America; Bell Canada; Catavault; Cingular Wireless; Cisco Systems, Inc.; Citigroup; Communicator, Inc.; Consignia; Cyberun Corporation; Deloitte & Touche LLP; Earthlink, Inc.; Electronic Data Systems, Inc.; Entrust, Inc.; Ericsson; Fidelity Investments; France Telecom; Gemplus; General Motors; Hewlett-Packard Company; i2 Technologies, Inc.; Internet2; Intuit Inc.; MasterCard International; NEC Corporation; Netegrity; NeuStar; Nextel Communications; Nippon Telegraph and Telephone Company; Nokia Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OneName Corporation; Openwave Systems Inc.; Phaos Technology; PricewaterhouseCoopers LLP; Register.com; RSA Security Inc; Sabre Holdings Corporation; SAP AG; SchlumbergerSema; SK Telecom; Sony Corporation; Sun Microsystems, Inc.; Trustgenix; United Airlines; VeriSign, Inc.; Visa International; Vodafone Group Plc; Wave Systems.; All rights reserved.

This specification document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact the Liberty Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are not, and shall not be held responsible in any manner, for identifying or failing to identify any or all such third party intellectual property rights. This Specification is provided "AS IS", and no participant in the Liberty Alliance makes any warranty of any kind, express or implied, including any implied warranties of merchantability, non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementors of this Specification are advised to review the Liberty Alliance Project’s website (http://www.projectliberty.org) for information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance Management Board.

Liberty Alliance Project
Licensing Administrator
c/o IEEE-ISTO
445 Hoes Lane
Piscataway, NJ 08855-1331, USA
info@projectliberty.org
Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>By Whom</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1.2 | Feb-10-03 | Xavier Serret, John Kemp | • Added multi-IdP support
• Added explicit text for Governing Agreements (extracted from the existing schema)
Added AC:extension element to cover the naked <any> in many places |
| 02 | Mar-10-03 | John Kemp | • Added IAP IP Context
• Corrected issue with extension element |
| 03 | Mar-10-03 | John Kemp | • Cleaned up for publication |
| 04 | Mar-21-03 | John Kemp | • Extension comes from ac: namespace now |
| 05 | Apr-12-03 | Tom Wason | • Formatted for publication
• Added abstract |
Table of Contents

1 Introduction .. 5
1.1 Notation ... 5
2 Overview .. 5
3 Authentication Context .. 6
3.1 Authentication Context Classes... 7
3.2 Authentication Quality... 8
3.2.1 Service Provider Request .. 8
3.2.2 Identity Provider Response... 9
4 Previous work ... 9
4.1 PKI .. 9
4.2 SAML ... 10
5 Liberty Authentication Context Mechanisms ... 11
5.1 Authentication Context Classes.. 11
5.1.1 MobileContract .. 11
5.1.2 MobileDigitalID ... 13
5.1.3 MobileUnregistered ... 16
5.1.4 Password ... 18
5.1.5 Password-ProtectedTransport .. 19
5.1.6 Previous-Session ... 20
5.1.7 Smartcard .. 21
5.1.8 Smartcard-PKI .. 22
5.1.9 Software-PKI ... 24
5.1.10 Time-Sync-Token .. 25
5.1.11 Internet Protocol ... 26
5.1.12 Internet Protocol + Password .. 27
5.2 Authentication Context Schema .. 28
5.2.1 XML Schema ... 28
6 References .. 37
1 Introduction

This specification defines a syntax for the definition of authentication context statements and an initial list of Liberty authentication context classes.

1.1 Notation

This specification uses schema documents conforming to W3C XML schema (see [Schema]) and normative text to describe the syntax and semantics of XML-encoded SAML assertions and protocol messages. Note: Phrases and numbers in brackets [] refer to other documents; details of these references can be found in Section 5 (at the end of this document).

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULDN’T,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this specification are to be interpreted as described in [RFC2119]: “they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions).”

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Note: Non-normative notes and explanations appear like this.

Listings of XML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, regardless of whether a namespace declaration is present in the example:

• The prefix lib: stands for the Liberty ID-FF namespace (urn:liberty:iff:1.2).
• The prefix AC: stands for the Liberty Authentication Namespace (urn:liberty:ac:1.2).

The prefix saml: stands for the SAML assertion namespace (urn:oasis:names:tc:SAML:1.0:assertion).

The prefix ds: stands for the W3C XML signature namespace (http://www.w3.org/2000/09/xmldsig#).

The prefix xsd: stands for the W3C XML schema namespace in example listings (http://www.w3.org/2001/XMLSchema). In schema listings, this namespace is the default, and no prefix is shown.

This specification uses the following typographical conventions in text: <Element>, <ns:ForeignElement>, Attribute, Datatype, OtherCode.

Definitions for Liberty-specific terms can be found in [LibertyGloss].

2 Overview

Liberty will not prescribe a single technology, protocol, or policy for the processes by which identity providers issue identities to Principals and by which those Principals subsequently authenticate themselves to the identity provider. Different identity providers will choose different technologies, follow different processes, and be bound by different
legal obligations with respect to how they authenticate Principals. The choices that an identity provider makes here will be driven in large part by the requirements of the service providers with which the identity provider has affiliated into a circle of trust. These requirements themselves will be determined by the nature of the service (that is, the sensitivity of any information exchanged, the associated financial value, the service providers risk tolerance, etc.) that the service provider will be providing to the Principal. Consequently, for anything other than trivial services, if the service provider is to place sufficient confidence in the authentication assertions it receives from an identity provider, it will be necessary for the service provider to know which technologies, protocols, and processes were used or followed for the original authentication mechanism on which the authentication assertion is based. Armed with this information and trusting the origin of the actual assertion, the service provider will be better able to make an informed entitlements decision regarding what services the subject of the authentication assertion should be allowed to access.

Authentication context is defined as the information additional to the authentication assertion itself that the service provider may require before it makes an entitlements decision.

3 Authentication Context

If a service provider is to rely on the authentication of a Principal by an identity provider, the service provider may require information additional to the authentication itself to allow it to put the authentication in a trust context. This information could include:

- Initial user identification mechanisms (for example, face-to-face, online, shared secret)
- Mechanisms for minimizing compromise of a Principal’s credentials (for example, credential renewal frequency, client-side key generation)
- Mechanisms for storing and protecting credentials (for example, smartcard, password rules)
- Authentication mechanism (for example, password, certificate-based SSL)

The variations and permutations in the examples above guarantee that not all authentication assertions are the same; a particular authentication assertion will be characterized by the values for each of these variables. A somewhat helpful model is to think of an authentication assertion as defined by its coordinates in a multidimensional space. This model is demonstrated in Figure 1 (where only three axes are shown).

![Figure 1: Authentication assertion as defined by its coordinates in multidimensional space](image_url)
A particular authentication context statement will be characterized by its values along the different axes and consequently by its position in this space.

3.1 Authentication Context Classes

Liberty can simplify for service providers the task of assessing and comparing authentication assertions by defining particular authentication contexts that are representative of current technologies and practices among identity providers. For instance, a typical authentication context will be when a Principal uses a self-chosen password over a server-authenticated SSL session to authenticate to an identity provider. (This identity would have been issued when the Principal was originally identified after proving knowledge of some personal information, for example, a frequent flier account number.) Liberty should acknowledge the relevance of this authentication context, and remove from service providers the burden of parsing an XML document that captures this context, by identifying this authentication context as a Liberty class and by giving it a unique identifier so that service providers can recognize it and place an appropriate level of assurance on the associated authentication assertion.

A particular Liberty authentication context class will define a list of required characteristics of the processes, procedures, and mechanisms by which the identity provider verifies the Principal before issuing an identity, protects the secrets on which subsequent authentications are based, and the mechanisms used for this authentication. These characteristics can be categorized as

Identification – Characteristics that describe the processes and mechanism the identity provider uses to initially create an association between a Principal and the identity (or name) by which the Principal will be known.

Physical Protection – Characteristics that specify physical controls on the facility housing the identity provider’s systems (for example, site location and construction, access controls).

Operational Protection – Characteristics that describe procedural security controls employed by the identity provider (for example, security audits, records archival).

Technical Protection – Characteristics that describe how the “secret” (the knowledge or possession of which allows the Principal to authenticate to the identity provider) is kept secure.

Authentication Method – Characteristics that define the mechanisms by which the Principal authenticates to the identity provider (for example, a password versus a smartcard).

Governing Agreements- Provide a mechanism for linking to external (likely human readable) documents in which the identity provider can define business level authentication context, for example, liability constraints or contractual obligations. Governing Agreements are normally profiled on a Authentication Class-level basis but can be specific to a given Authentication Context statement.

Authenticating IdP- When Principal authentication is relayed between different IdPs to provide for a seamless cross-IdP SSO experience the relaying IdP MAY include this element with a reference to the originating IdP. The relaying IdP MAY include as well extra specific inter-IdP Governing Agreements that may affect those specified at the Authentication Class-level.

Rather than a class being a rigid collection of these characteristics, a class will define a set of conformant authentication context statements (for example, multiple and different authentication context statements will satisfy the requirements of a given class). The relationship between an authentication context class and particular authentication context statements is shown in Figure 2, where all the authentication context statements satisfy the requirements expressed by the class.
By introducing the additional layer of classes and by defining an initial list of representative and flexible classes, Liberty architecture makes it easier for the identity provider and service provider to come to an agreement on what are acceptable authentication contexts by giving them a framework for discussion. Makes it easier for service providers to indicate their preferences when requesting a step-up authentication assertion from an identity provider. Simplifies for service providers the burden of processing authentication context statements by giving them the option of being satisfied by the associated class. Protects service providers from impact of new authentication technologies. Makes it easier for identity providers to publish their authentication capabilities, for example, through WSDL.

3.2 Authentication Quality

Authentication quality refers to the level of assurance that a service provider can place in an authentication assertion it receives from an identity provider. Authentication quality is motivated by two goals: An identity provider must be able to indicate to a service provider the level of confidence it has in an authentication assertion, and a service provider should be able to indicate its preferences for an authentication context without necessarily specifying the exact context characteristics. The fundamental concern with the concept of authentication quality is the difficulty for Liberty to make the necessary assessments of the classes to enable this flexibility.

3.2.1 Service Provider Request

To provide the desired flexibility without requiring Liberty to itself assess the quality of particular authentication classes, the service provider will be provided a flexible mechanism by which it can indicate its preferences for authentication context to the identity provider. The <lib:AuthnRequest> message will allow the service provider to request any of the following:

1. A match on a particular authentication context statement
Liberty Alliance Project: Liberty Authentication Context Specification

224 2. A match within a specific authentication context class
225 3. A match or better on a particular authentication context class
226 4. A match within an ordered list (which is designated by the service provider) of authentication context classes
227 5. A match on the originating IdP within an ordered list.

228 Option 1 will require that the identity provider and service provider have previously agreed on the details of a
229 particular authentication context that either does not fall into one of the Liberty-defined authentication context classes
230 or needs to be constrained more tightly.

231 Option 2 is expected to be the typical scenario.

232 For option 3, the decision as to what is better is left to the entity best qualified to make that determination, the identity
233 provider. The service provider, trusting the identity provider’s judgment, will accept the assertion it receives back
234 because it will be confident the assertion meets (or exceeds) the provider’s requirements.

235 Option 4 will give the service provider greater control over the authentication context classes to which the
236 authentication assertions it receives conform. The identity provider is given no leeway in providing an authentication
237 assertion conforming to a class not on the list.

238 Option 5 will give the service provider control on which is the original IdP authenticating the Principal. A list containing
239 zero elements MUST be interpreted as the a non-delegable authentication request.

240 If the service provider does not specify any of the above options in the <lib:AuthnRequest>, the identity
241 provider will be free to provide an authentication context of its choosing.

3.2.2 Identity Provider Response

242 The authentication assertion that the identity provider returns to the service provider may indicate the authentication
243 context class to which the authentication assertion conforms (if it does conform to any such authentication context
244 class), which may or may not be the same as the class requested.

245 The returned authentication assertion will include a URI specifying the associated authentication context statement.

4 Previous work

254 The concept of authentication context has been addressed in other work.

4.1 PKI

256 An X.509 certificate is a signed assertion of identity just as a SAML authentication assertion is. Consequently it is not
257 surprising that the issue of authentication context has been addressed within the PKI world. A number of different
258 standards or proposals for capturing this sort of information have been written:

259 Certificate Practice Statement (CPS) is a statement of the practices that a certification authority employs in issuing
260 certificates. A certificate practice statement may take the form of a declaration by the certification authority of the
261 details of its trustworthy systems and the practices it employs in support of its issuance of certificates.

262 Certificate Policy is a named set of rules that indicates the applicability of a certificate to a particular community
263 and/or class of application. For example, a certificate policy might indicate that a particular type of certificate is
264 appropriate for the authentication of participants in a business-to-business transaction within a given price range. The
265 fundamental difference between the certificate practice statement and the certificate policy is that the former is
266 “owned” by the issuing certification authority and the latter by the entities who will use the issued certificates.
267 Certificate users define certificate policies, and certification authorities (with different certificate practice statements)
268 attest that a particular certificate is appropriate for that certificate policy. (See [RFC2527].)
PKI Disclosure Statement is a supplementary instrument that discloses critical information about the policies and practices of a certificate authority or PKI. A PKI disclosure statement is a vehicle for disclosing and emphasizing information normally covered in detail by associated certificate policy and/or certification practice statement documents. Consequently, a PKI disclosure statement is not intended to replace a certificate policy or practice statement. (See [PDS].)

Key Usage, as defined in X.509, defines the intended use for a key contained in a certificate. These uses (or values) are digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment, keyAgreement, keyCertSign, CRLSign, encipherOnly, and decipherOnly.

Extended Key Usage, as the name indicates, extends the possible uses for a key beyond the original nine, each use identified by an object identifier. Extended key usage is primarily used by the relying party. As part of its validation algorithm, a relying party will check for these values to determine whether a given certificate is appropriate for the application.

4.2 SAML

SAML provides limited support for the concept of authentication context, it defines an AuthenticationMethod attribute on the <saml:AuthenticationStatement> element and an unconstrained (schema model of ANY) <saml:Advice> element. The following listing is an example (where the relevant elements and attributes are bolded):

```xml
<?xml version="1.0"?>
<saml:Assertion>
  <saml:AuthenticationStatement AuthenticationMethod="urn:ietf:rfc:2246">
    <saml:Subject>
      <saml:NameIdentifier Format="http://www.oasis-open.org/committees/security/docs/cs-sstc-core-28#X509SubjectName" cn=Joe User, dc=projectliberty, dc=org>
        <saml:NameIdentifier/>
      </saml:NameIdentifier>
    </saml:Subject>
  </saml:AuthenticationStatement>
  <saml:Advice>
    <!--additional elements in separate namespace
    <saml:Advice>
    <saml:Assertion>
  </saml:Advice>
</saml:Assertion>
```

Note: SAML also defines a <saml:Condition> element, the purpose of which is somewhat complementary to the <saml:Advice> element (see [SAMLCore]).

<saml:Condition> [Optional]. Conditions that MUST be taken into account in assessing the validity of the assertion.

<saml:Advice> [Optional]. Additional information related to the assertion that assists processing in certain situations, but MAY be ignored by applications that do not support its use.

The intent seems to be that the <saml:Condition> element protects the issuing party, and the <saml:Advice> element protects the relying party.

SAML also defines the <saml:SubjectConfirmation> element as “a URI that identifies a protocol to be used to authenticate the subject” where authenticate refers to how the bearer of a SAML assertion proves that it is authorized to hold the assertion as opposed to how it convinced the identity provider to issue the assertion. As such, <saml:SubjectConfirmation> is distinct from authentication context.

SAML identified a list of common authentication protocols as possible values for both the AuthenticationMethod attribute and the <saml:SubjectConfirmation> element, including SAML Artifact, Holder of Key, Sender Vouches, Password, Kerberos, and SSL/TLS.
5 Liberty Authentication Context Mechanisms

5.1 Authentication Context Classes

The Liberty authentication context classes are listed in this section.

No ranking is implied by the order of classes.

Classes are identified by URIs with the initial stem:

http://www.projectliberty.org/schemas/authctx/classes

5.1.1 MobileContract

The MobileContract class is identified when a mobile Principal has an identity for which the identity provider has vouched.

5.1.1.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/MobileContract

5.1.1.2 Class Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <annotation>
    <documentation>http://www.projectliberty.org/schemas/authctx/classes/MobileContract</documentation>
  </annotation>
  <xs:element name="AuthenticationContextStatement">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="Identification"/>
        <xs:element minOccurs="1" maxOccurs="1" ref="TechnicalProtection"/>
        <xs:element minOccurs="1" maxOccurs="1" ref="AuthenticationMethod"/>
        <xs:element minOccurs="1" maxOccurs="1" ref="OperationalProtection"/>
        <xs:element minOccurs="1" maxOccurs="1" ref="GoverningAgreements"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="AuthenticationMethod">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="Authenticator"/>
        <xs:element minOccurs="1" maxOccurs="1" ref="AuthenticatorTransportProtocol"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="Authenticator">
    <xs:complexType>
      <xs:sequence>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="AuthenticatorTransportProtocol">
    <xs:complexType>
      <xs:sequence>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
<xs:element minOccurs="1" maxOccurs="1" ref="SharedSecretChallengeResponse"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="AuthenticatorTransportProtocol">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="MobileNetwork"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="DeactivationCallCenter">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreementRef">
 <xs:complexType>
 <xs:attribute name="ref" fixed="http://SomeMobileforum.org/namespaces/authcontext/classes/MobileClass2.pdf"/>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreements">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="GoverningAgreementRef"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Identification">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="PhysicalVerification"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 <xs:attribute name="nym" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileAuthCard">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileDevice">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileNetwork">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="OperationalProtection">
 <xs:complexType>
 </xs:complexType>
</xs:element>
5.1.2 MobileDigitalID

The MobileDigitalID class is identified by detailed and verified registration procedures, users’ consent to sign and authorize transactions, and DigitalID-based authentication.

5.1.2.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/MobileDigitalID

5.1.2.2 Class Schema
<documentation> http://www.projectliberty.org/schemas/authctx/classes/MobileDigitalID </documentation>

<annotation>
<xs:element name="AuthenticationContextStatement">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Identification"/>
 <xs:element ref="TechnicalProtection"/>
 <xs:element ref="AuthenticationMethod"/>
 <xs:element ref="OperationalProtection"/>
 <xs:element ref="GoverningAgreements"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="AuthenticationMethod">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Authenticator"/>
 <xs:element ref="AuthenticatorTransportProtocol"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Authenticator">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="Dig-sig"/>
 <xs:element ref="ZeroKnowledge"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="AuthenticatorTransportProtocol">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="MobileNetwork"/>
 <xs:element ref="SSL"/>
 <xs:element ref="WTLS"/>
 <xs:element ref="IPSec"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="DeactivationCallCenter">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Dig-sig">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreementRef">
 <xs:complexType>
 <xs:attribute name="ref" fixed="http://SomeMobileforum.org/namespaces/authcontext/classes/MobileClass3.pdf"/>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreements">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GoverningAgreementRef"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="IPSec">
<xs:complexType><xs:sequence><xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence></xs:complexType>

<xs:element name="Identification">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="PhysicalVerification"/>
 <xs:element ref="WrittenConsent"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="KeyStorage">
 <xs:complexType>
 <xs:attribute name="nym" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

<xs:element name="MobileNetwork">
 <xs:complexType><xs:sequence><xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence></xs:complexType>
</xs:element>

<xs:element name="OperationalProtection">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SecurityAudit"/>
 <xs:element ref="DeactivationCallCenter"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="PhysicalVerification">
 <xs:complexType>
 <xs:attribute name="credentialLevel" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

<xs:element name="PrivateKeyProtection">
 <xs:complexType><xs:sequence><xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence></xs:complexType>
</xs:element>

<xs:element name="SSL">
 <xs:complexType><xs:sequence><xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence></xs:complexType>
</xs:element>

<xs:element name="SecurityAudit">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SwitchAudit"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="TechnicalProtection">
 <xs:complexType><xs:sequence><xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/></xs:sequence></xs:complexType>
</xs:element>
5.1.3 MobileUnregistered

The MobileUnregistered class is identified when the real identity of a mobile Principal has not been strongly verified.

5.1.3.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/MobileUnregistered

5.1.3.2 Class Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <annotation>
    <documentation>
      http://www.projectliberty.org/schemas/authctx/classes/MobileUnregistered
    </documentation>
  </annotation>
  <xs:element name="AuthenticationContextStatement">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="TechnicalProtection"/>
        <xs:element ref="AuthenticationMethod"/>
        <xs:element ref="OperationalProtection"/>
        <xs:element ref="GoverningAgreements"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

  <xs:element name="AuthenticationMethod">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="Authenticator"/>
        <xs:element ref="AuthenticatorTransportProtocol"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

  <xs:element name="Authenticator">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="SharedSecretChallengeResponse"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
<xs:element name="AuthenticatorTransportProtocol">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="MobileNetwork"/> <!-- maxOccurs=""unbounded"" -->
 <xs:element ref="DeactivationCallCenter"/>
 <xs:element name="GoverningAgreementRef"/>
 <xs:element name="GoverningAgreements"/>
 <xs:element name="OperationalProtection"/>
 <xs:element name="SecurityProtection"/>
 <xs:element name="SwitchProtection"/>
 <xs:element name="SharedKeyProtection"/>
 <xs:choice>
 <xs:element name="MobileAuthCard"/>
 <xs:element name="MobileDevice"/>
 <xs:element name="MobileNetwork"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreementRef">
 <xs:complexType>
 <xs:attribute name="ref" fixed="http://SomeMobileforum.org/namespaces/authcontext/classes/Mobile-Class1.pdf"/>
 </xs:complexType>
</xs:element>

<xs:element name="GoverningAgreements">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GoverningAgreementRef"/>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileAuthCard">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileDevice">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="MobileNetwork">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SecurityProtection">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SecurityAudit"/>
 <xs:element ref="DeactivationCallCenter"/>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SwitchProtection">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="SwitchAudit"/>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SharedKeyProtection">
 <xs:complexType>
 <xs:choice>
 <xs:element name="MobileAuthCard"/>
 <xs:element name="MobileDevice"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="SharedSecretChallengeResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" maxOccurs=""unbounded""/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
5.1.4 Password

The Password class is identified when a Principal authenticates to an identity provider through the presentation of a password over an unprotected HTTP session.

5.1.4.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Password

5.1.4.2 Class Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <annotation>
    <documentation>http://www.projectliberty.org/schemas/authctx/classes/Password</documentation>
  </annotation>
  <xs:element name="AuthenticationContextStatement">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AuthenticationMethod"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:complexType>
    </xs:element>
  </xs:element>
  <xs:element name="AuthenticationMethod">
    <xs:complexType>
      <xs:all>
        <xs:element ref="PrincipalAuthenticationMechanism"/>
        <xs:element ref="AuthenticatorTransportProtocol"/>
      </xs:all>
    </xs:complexType>
  </xs:element>
  <xs:element name="AuthenticatorTransportProtocol">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="HTTP"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="HTTP">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="Length">
```
5.1.5 Password-ProtectedTransport

The Password-ProtectedTransport class is identified when a Principal authenticates to an identity provider through the presentation of a password over an SSL-protected session.

5.1.5.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Password-ProtectedTransport

5.1.5.2 Class Schema
5.1.6 Previous-Session

The Previous-Session class is identified when a Principal had authenticated to an identity provider at some point in the past using any authentication context supported by that identity provider. Consequently, a subsequent authentication event that the identity provider will assert to the service provider may be significantly separated in time from the Principal’s current resource access request.

The context for the previously authenticated session is explicitly not included in this context class because the user has not authenticated during this session, and so the mechanism that the user employed to authenticate in a previous session should not be used as part of a decision on whether to now allow access to a resource.

5.1.6.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Previous-Session

5.1.6.2 Class Schema
5.1.7 Smartcard

The Smartcard class is identified when a Principal authenticates to an identity provider using a smartcard.

5.1.7.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Smartcard

5.1.7.2 Class Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
    elementFormDefault="qualified">
    <annotation>
        <documentation>http://www.projectliberty.org/schemas/authctx/classes/Smartcard</documentation>
    </annotation>
    <xs:element name="AuthenticationContextStatement">
        <xs:complexType>
            <xs:sequence>
                <xs:element minOccurs="1" maxOccurs="1" ref="AuthenticationMethod"/>
                <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
            </xs:complexType>
        </xs:element>
        <xs:element name="AuthenticationMethod">
            <xs:complexType>
                <xs:sequence>
                    <xs:element ref="PrincipalAuthenticationMechanism"/>
                    <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
                </xs:complexType>
            </xs:element>
            <xs:element name="PrincipalAuthenticationMechanism">
                <xs:complexType>
                    <xs:sequence>
                        <xs:element ref="PrincipalAuthenticationMechanism"/>
                        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
                    </xs:complexType>
                </xs:element>
            </xs:element>
        </xs:element>
    </xs:complexType>
</xs:schema>
```
5.1.8 Smartcard-PKI

The Smartcard-PKI class is identified when a Principal authenticates to an identity provider through a two-factor authentication mechanism using a smartcard with enclosed private key and a PIN.

5.1.8.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Smartcard-PKI

5.1.8.2 Class Schema
<xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="SSL"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>
</xs:element>

<xs:element name="Dig-sig">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="KeyActivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="Password"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Length">
 <xs:complexType>
 <xs:attribute name="min" type="xs:byte" use="required"/>
 </xs:complexType>
</xs:element>

<xs:element name="Password">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="Length"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="PrincipalAuthenticationMechanism">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="Smartcard"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="PrivateKeyProtection">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="KeyActivation"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SSL">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Smartcard">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="TechnicalProtection">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" ref="PrivateKeyProtection"/>
 <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>
5.1.9 Software-PKI

The Software-PKI class is identified when a Principal uses an X.509 certificate stored in software to authenticate to the identity provider over an SSL protected session.

5.1.9.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Software-PKI

5.1.9.2 Class Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <annotation>
    <documentation>
      http://www.projectliberty.org/schemas/authctx/classes/Software-PKI
    </documentation>
  </annotation>

  <xs:element name="AuthenticationContextStatement">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="AuthenticationMethod"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="AuthenticationMethod">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="PrincipalAuthenticationMechanism"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="PrincipalAuthenticationMechanism">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" maxOccurs="0"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="Authenticator">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" maxOccurs="0"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="AuthenticatorTransportProtocol">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" maxOccurs="0"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="SSL">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" maxOccurs="0"/>
      </xs:complexType>
    </xs:element>
  </xs:element>

  <xs:element name="Dig-sig">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="AC:extension" maxOccurs="0"/>
      </xs:complexType>
    </xs:element>
  </xs:element>
</xs:schema>
```
5.1.10 Time-Sync-Token

The Time-Sync-Token class is identified when a Principal authenticates through a time synchronization token.

5.1.10.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/Time-Sync-Token

5.1.10.2 Class Schema

```xml
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <annotation>
    <documentation> http://www.projectliberty.org/schemas/authctx/classes/Time-Sync-Token </documentation>
  </annotation>

  <xs:element name="AuthenticationContextStatement">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="AuthenticationMethod"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

  <xs:element name="AuthenticationMethod">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="PrincipalAuthenticationMechanism"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

  <xs:element name="Generation">
    <xs:complexType>
      <xs:attribute name="mechanism" fixed="principalchosen"/>
    </xs:complexType>
  </xs:element>

  <xs:element name="PrincipalAuthenticationMechanism">
    <xs:complexType>
      <xs:sequence>
        <xs:element minOccurs="1" maxOccurs="1" ref="Password"/>
        <xs:element ref="AC:extension" minOccurs="0" maxOccurs="unbounded"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
5.1.11 Internet Protocol

The Internet Protocol class is identified when a Principal is authenticated through the use of a provided IP address.

5.1.11.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/IAP-IPAddress

5.1.11.2 Class Schema
5.1.12 Internet Protocol + Password

The Internet Protocol Password class is identified when a Principal is authenticated through the use of a provided IP address, in addition to username/password.

5.1.12.1 Associated Liberty URI

http://www.projectliberty.org/schemas/authctx/classes/IAP-Password

5.1.12.2 Class Schema
5.2 Authentication Context Schema

The relationship between authentication context statements, authentication context classes, and the authentication context XML schema is shown in Figure 3.

Figure 3: Relationship between authentication context statements, classes, and XML schema

Authentication context statements may conform to authentication context classes, which are themselves logical subsets of the authentication context XML schema.

5.2.1 XML Schema

```xml
<xs:schema targetNamespace="urn:liberta:ac:1.2"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="urn:liberta:ac:1.2"
  xmlns="http://www.w3.org/2001/XMLSchema" version="1.2-04">
  <!-- added to get the Extension element -->
  <xs:annotation>
    <xs:include schemaLocation="lib-arch-utility.xsd"/>
</xs:annotation>
```
<xs:documentation>### IMPORTANT NOTICE ### The source code in this XSD file was excerpted verbatim from: Liberty Authentication Context Specification (liberty-architecture-authentication-context-v1.2) Version 1.2 04 April 2003
The following notices pertain to this source file: Copyright (c) 2002,2003 ActivCard; American Express Travel Related Services; America Online, Inc.; Bank of America; Bell Canada; Catavant; Cingular Wireless; Cisco Systems, Inc.; Citigroup; Communicator, Inc.; Consignia; Cyberun Corporation; Deloitte & Touche LLP; Earthlink, Inc.; Electronic Data Systems, Inc.; Entrust, Inc.; Ericsson; Fidelity Investments; France Telecom; Gemplus; General Motors; Hewlett-Packard Company; i2 Technologies, Inc.; Internet2; Intuit Inc.; MasterCard International; NEC Corporation; Netegrity; NeuStar; Nextel Communications; Nippon Telegraph and Telephone Company; Nokia Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OneName Corporation; Openwave Systems Inc.; Phaos Technology; PricewaterhouseCoopers LLP; Register.com; RSA Security Inc; Sabre Holdings Corporation; SAP AG; SchumbergerSema; SK Telecom; Sony Corporation; Sun Microsystems, Inc.; Trustgenix; United Airlines; VeriSign, Inc.; Vlsa International; Vodafone Group Plc; Wave Systems. All rights reserved. This specification document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact the Liberty Alliance to determine whether an appropriate license for such use is available. Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are not, and shall not be held responsible in any manner, for identifying or failing to identify any or all such third party intellectual property rights. This Specification is provided "AS IS", and no participant in the Liberty Alliance makes any warranty of any kind, express or implied, including any implied warranties of merchantability, non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementors of this Specification are advised to review the Liberty Alliance Project’s website (http://www.projectliberty.org) for information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance Management Board. Liberty Alliance Project Licensing Administrator c/o IEEE-ISTO 445 Hoes Lane Piscataway, NJ 08855-1331, USA
http://www.projectliberty.org/schemas/authctx/2002/05</xs:documentation>
</xs:annotation>
</xs:element>
</xs:complexType>
</xs:sequence>
</xs:element> Identification” minOccurs="0"/>
</xs:element> ref="TechnicalProtection" minOccurs="0"/>
</xs:element> ref="OperationalProtection" minOccurs="0"/>
</xs:element> ref="AuthenticationMethod" minOccurs="0"/>
</xs:element> ref="GoverningAgreements" minOccurs="0"/>
</xs:element> ref="AuthenticationIdP" minOccurs="0"/>
</xs:element> ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:element> A particular assertion on an identity provider's part with respect to the authentication context associated with an authentication assertion. </xs:documentation>
</xs:annotation>
</xs:element>
</xs:complexType>
</xs:sequence>
</xs:element> Identification" minOccurs="0"/>
</xs:element> ref="Identification">
<xs:annotation>
<xs:documentation>Refers to those characteristics that describe the processes and mechanisms the identity provider uses to initially create an association between a Principal and the identity (or name) by which the Principal will be known</xs:documentation>
</xs:annotation>
</xs:element> Identification” ref="Identification">
</xs:element> ref="Identification">
Identification mechanisms allow the actions of the Principal to be linked to an actual end user.

This attribute indicates whether or not the user.

The element indicates that identification has been performed in a physical face-to-face meeting with the principal and not in an online manner.

This element indicates the types and strengths of facilities of a UA used to protect a shared secret key from unauthorized access and/or use.
Liberty Alliance Project: Liberty Authentication Context Specification

```
<xs:complexType>
  <xs:choice minOccurs="0">
    <xs:element ref="MobileDevice"/>
    <xs:element ref="MobileAuthCard"/>
  </xs:choice>
</xs:complexType>

<xs:element name="MobileDevice">
  <xs:annotation>
    <xs:documentation>This element indicates that the shared secret key is securely maintained in a mobile device (as opposed to being stored in a mobile authentication card).</xs:documentation>
  </xs:annotation>
</xs:complexType>

<xs:element name="MobileAuthCard">
  <xs:annotation>
    <xs:documentation>This element indicates that the shared secret key is securely maintained in a mobile authentication card (e.g., a SIM card).</xs:documentation>
  </xs:annotation>
</xs:complexType>

<xs:element name="PrivateKeyProtection">
  <xs:annotation>
    <xs:documentation>This element indicates the types and strengths of facilities of a UA used to protect a private key from unauthorized access and/or use.</xs:documentation>
  </xs:annotation>
</xs:complexType>

<xs:element name="KeyActivation">
  <xs:annotation>
    <xs:documentation>The actions that must be performed before the private key can be used.</xs:documentation>
  </xs:annotation>
</xs:complexType>

<xs:element name="KeyStorage">
  <xs:annotation>
    <xs:documentation>In which medium is the private key stored. Memory - the private key is stored in memory. Ecard - the private key is stored in a smartcard. Token - the private key is stored in a hardware token. MobileAuthCard - the private key is stored in a mobile authentication card (e.g., SIM card).</xs:documentation>
  </xs:annotation>
</xs:complexType>
```

Liberty Alliance Project

31
<xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="memory"/>
 <xs:enumeration value="smartcard"/>
 <xs:enumeration value="token"/>
 <xs:enumeration value="MobileAuthCard"/>
 </xs:restriction>
</xs:simpleType>

This element indicates that a password (or PIN or passphrase) has been used to authenticate the Principal or to gain access to some resource (for example, to gain access to the private key).

This element indicates that a hardware or software token is used as a method of identifying the Principal.

This element indicates that a time synchronization token is used to identify the Principal. hardware - the time synchronization token has been implemented in hardware. software - the time synchronization token has been implemented in software. SeedLength - the length, in bits, of the random seed used in the time synchronization token.

<xs:complexType>
 <xs:attribute name="DeviceType" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="hardware"/>
 <xs:enumeration value="software"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="SeedLength" type="xs:integer" use="required"/>
 <xs:attribute name="DeviceInHand" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>
<xs:documentation>This element indicates that a smartcard is used to identify the Principal.</xs:documentation>
</xs:annotation>
<xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
<xs:element name="Length">
 <xs:annotation>
 <xs:documentation>This element indicates the minimum and/or maximum ASCII length of the password which is enforced (by the UA or the IdP). In other words, this is the minimum and/or maximum number of ASCII characters required to represent a valid password. min - the minimum number of ASCII characters required in a valid password, as enforced by the UA or the IdP.
 max - the maximum number of ASCII characters required in a valid password, as enforced by the UA or the IdP.</xs:documentation>
</xs:annotation>
<xs:complexType>
 <xs:attribute name="min" type="xs:integer" use="required"/>
 <xs:attribute name="max" type="xs:integer" use="optional"/>
</xs:complexType>
</xs:element>
</xs:complexType>
<xs:element name="Generation">
 <xs:annotation>
 <xs:documentation>Indicates whether the password was chosen by the Principal or auto-supplied by the identity provider. principalchosen - the Principal is allowed to choose the value of the password. This is true even if the initial password is chosen at random by the UA or the IdP and the Principal is then free to change the password. automatic - the password is chosen by the UA or the IdP to be cryptographically strong in some sense, or to satisfy certain password rules, and that the Principal is not free to change it or to choose a new password.</xs:documentation>
</xs:annotation>
<xs:complexType>
 <xs:attribute name="mechanism" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMToken">
 <xs:enumeration value="principalchosen"/>
 <xs:enumeration value="automatic"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>
</xs:element>
</xs:complexType>
<xs:element name="AuthenticationMethod">
 <xs:annotation>
 <xs:documentation>Refers to those characteristics that define the mechanisms by which the Principal authenticates to the identity provider.</xs:documentation>
</xs:annotation>
<xs:complexType>
 <xs:sequence>
 <xs:element ref="PrincipalAuthenticationMechanism"/>
 <xs:element ref="Authenticator" minOccurs="0"/>
 <xs:element ref="AuthenticatorTransportProtocol"/>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
<xs:element name="PrincipalAuthenticationMechanism">
 <xs:annotation>
 <xs:documentation>The method that a Principal employs to perform authentication to local system components.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="Password"/>
 <xs:element ref="Token"/>
 <xs:element ref="Smartcard"/>
 </xs:choice>
</xs:complexType>
</xs:element>

<xs:element name="Authenticator">
 <xs:annotation>
 <xs:documentation>The method applied to validate a principal's authentication across a network</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="PreviousSession"/>
 <xs:element ref="Dig-sig"/>
 <xs:element ref="ZeroKnowledge"/>
 <xs:element ref="SharedSecretChallengeResponse"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="PreviousSession">
 <xs:annotation>
 <xs:documentation>Indicates that the Principal has been strongly authenticated in a previous session during which the IdP has set a cookie in the UA. During the present session the Principal has only been authenticated by the UA returning the cookie to the IdP.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="ZeroKnowledge">
 <xs:annotation>
 <xs:documentation>This element indicates that the Principal has been authenticated by a zero knowledge technique as specified in ISO/IEC 9798-5.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SharedSecretChallengeResponse">
 <xs:annotation>
 <xs:documentation>This element indicates that the Principal has been authenticated by a challenge-response protocol utilizing shared secret keys and symmetric cryptography.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Dig-sig">
 <xs:annotation>
 <xs:documentation>This element indicates that the Principal has been authenticated by a mechanism which involves the Principal computing a digital signature over at least challenge data provided by the IdP.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AuthenticatorTransportProtocol">
 <xs:annotation>
 <xs:documentation>The protocol across which Authenticator information is transferred to an identity provider verifier.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="HTTP"/>
 <xs:element ref="SSL"/>
 <xs:element ref="MobileNetwork"/>
 <xs:element ref="WTLS"/>
 <xs:element ref="IPSec"/>
 </xs:choice>
 </xs:complexType>
</xs:element>
<xs:element name="HTTP">
 <xs:annotation>
 <xs:documentation>This element indicates that the Authenticator has been transmitted using bare HTTP utilizing no additional security protocols.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="IPSec">
 <xs:annotation>
 <xs:documentation>This element indicates that the Authenticator has been transmitted using a transport mechanism protected by an IPSEC session.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="WTLS">
 <xs:annotation>
 <xs:documentation>This element indicates that the Authenticator has been transmitted using a transport mechanism protected by a WTLS session.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="MobileNetwork">
 <xs:annotation>
 <xs:documentation>This element indicates that the Authenticator has been transmitted solely across a mobile network using no additional security mechanism.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="SSL">
 <xs:annotation>
 <xs:documentation>This element indicates that the Authenticator has been transmitted using a transport mechanism protected by an SSL or TLS session.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="OperationalProtection">
 <xs:annotation>
 <xs:documentation>Refers to those characteristics that describe procedural security controls employed by the identity provider.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="SecurityAudit">
 <xs:annotation>
 <xs:documentation>Provides a mechanism for linking to external (likely human readable) documents in which the identity provider can define business level authentication context, e.g. liability constraints, contractual obligations.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="DeactivationCallCenter">
 <xs:annotation>
 <xs:documentation>Governs agreements between the identity provider and its customers for the deactivation of accounts.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="GoverningAgreements">
 <xs:annotation>
 <xs:documentation>Describes the legal agreements that govern the relationship between the identity provider and its customers.</xs:documentation>
 </xs:annotation>
</xs:element>
6 References

